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Abstract

We construct smooth parameterizationsof irregular connectivity tri-
angulations of arbitrary genus 2-manifolds. Our algorithm uses hi-
erarchical simplification to efficiently induce a parameterization of
the original mesh over a base domain consisting of a small num-
ber of triangles. This initial parameterization is further improved
through a hierarchical smoothing procedure based on Loop sub-
division applied in the parameter domain. Our method supports
both fully automatic and user constrained operations. In the latter,
we accommodate point and edge constraintsto force the alignment
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Figure 1. Overview of our algorithm. Top
left: a scanned input mesh (courtesy Cyber-
ware). Next the parameter or base domain,
obtained through mesh simplification. Top
right: regions of the original mesh colored
accordingto their assigned basedomain tri-
angle. Bottomleft: adaptiveremeshingwith
subdivision connectivity (¢ = 1%). Bottom
middle: multiresolution edit.

of iso-parameter lines with desired features. We show how to use
the parameterization for fast, hierarchical subdivision connectivity
remeshing with guaranteed error bounds. The remeshing algorithm
constructs an adaptively subdivided mesh directly without first re-
sorting to uniform subdivision followed by subsequent sparsifica-
tion. It thus avoids the exponential cost of the latter. Our parame-
terizations are also useful for texture mapping and morphing appli-
cations, among others.

CR Categoriesand Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/lmage
Generation — Display Algorithms, Viewing Algorithms; 1.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - Curve, Surface, Solid and Object Rep-
resentations, Hierarchy and Geometric Transformations, Object Hierarchies.
Additional Key Words and Phrases: Meshes, surface parameterization, mesh sim-
plification, remeshing, texture mapping, multiresolution, subdivision surfaces, Loop
scheme.

1 Introduction

Dense triangular meshes routinely result from a number of 3D ac-
quisition techniques, e.g., laser range scanning and MRI volumet-
ric imaging followed by iso-surface extraction (see Figure 1 top
left). The triangulations form a surface of arbitrary topology—
genus, boundaries, connected components—and haveirregular con-
nectivity. Because of their complex structure and tremendous size,
these meshes are awkward to handle in such common tasks as stor-
age, display, editing, and transmission.



Multiresolution representations are now established as a funda-
mental component in addressing these issues. Two schools exist.
One approach extends classical multiresolution analysis and subdi-
vision techniquesto arbitrary topology surfaces[19, 20, 7, 3]. The
alternative is more general and is based on sequential mesh simpli-
fication, e.g., progressive meshes (PM) [12]; see [11] for areview.
In either case, the objective is to represent triangulated 2-manifolds
in an efficient and flexible way, and to usethis descriptionin fast al-
gorithms addressing the challenges mentioned above. Our approach
fitsin the first group, but draws on ideas from the second group.

An important element in the design of algorithms which manip-
ulate mesh approximations of 2-manifolds is the construction of
“nice” parameterizations when none are given. Idealy, the mani-
fold is parameterized over abase domain consisting of asmall num-
ber of triangles. Oncea surfaceis understood as a function from the
base domain into R3 (or higher-D when surface attributes are con-
sidered), many tools from areas such as approximation theory, sig-
nal processing, and numerical analysis are at our disposal. In par-
ticular, classical multiresolution analysis can be used in the design
and analysis of algorithms. For example, error controlled, adaptive
remeshing can be performed easily and efficiently. Figure 1 shows
the outline of our procedure: beginningwith anirregular input mesh
(top left), we find a base domain through mesh simplification (top
middle). Concurrent with simplification, a mapping is constructed
which assignsevery vertex from the original mesh to abasetriangle
(top right). Using this mapping an adaptiveremesh with subdivision
connectivity canbe built (bottom left) which isnow suitablefor such
applications as multiresolution editing (bottom middle). Addition-
ally, there are other practical payoffsto good parameterizations, for
example in texture mapping and morphing.

In this paper we present an algorithm for the fast computation
of smooth parameterizations of dense 2-manifold mesheswith arbi-
trary topology. Specifically, we makethe following contributions

e We describe an O(NlogN) time and storage algorithm to con-
struct alogarithmic level hierarchy of arbitrary topology, irregu-
lar connectivity meshes based on the Dobkin-Kirkpatrick (DK)
algorithm. Our algorithm accommodatesgeometric criteria such
as areaand curvature as well as vertex and edge constraints.

e We construct a smooth parameterization of the original mesh
over the base domain. This parameterization is derived through
repeated conformal remapping during graph simplification fol-
lowed by a parameter space smoothing procedure based on the
Loop scheme. Theresulting parameterizationsare of high visual
and numerical quality.

e Using the smooth parameterization, we describean algorithm for
adaptive, hierarchical remeshing of arbitrary meshesinto subdi-
vision connectivity meshes. The procedure is fully automatic,
but also allows for user intervention in the form of fixing point
or path features in the original mesh. The remeshed manifold
meets conservative approximation bounds.

Even though the ingredients of our construction are reminiscent
of mesh simplification algorithms, we emphasize that our goal is
not the construction of another mesh simplification procedure, but
rather the construction of smooth parameterizations. We are partic-
ularly interested in using these parameterizationsfor remeshing, al-
though they are useful for avariety of applications.

1.1 Related Work

A number of researchers have considered—either explicitly or
implicitly—the problem of building parameterizations for arbitrary
topology, triangulated surfaces. This work falls into two main cat-
egories: (1) algorithms which build a smoothly parameterized ap-
proximation of a set of samples(e.g. [14, 1, 17]), and (2) algorithms
which remesh an existing mesh with the goal of applying classical

multiresolution approaches[7, 8].

A related, though quite different problem, is the maintenance of
a given parameterization during mesh simplification [4]. We em-
phasizethat our goal is the construction of mappingswhen noneare
given.

In the following two sections, we discuss related work and con-
trast it to our approach.

1.1.1 Approximation of a Given Set of Samples

Hoppe and co-workers [14] describe a fully automatic algorithm
to approximate a given polyhedral mesh with Loop subdivision
patches [18] respecting features such as edges and corners. Their
algorithm uses a non-linear optimization procedure taking into ac-
count approximation error and the number of triangles of the base
domain. The result is a smooth parameterization of the original
polyhedral mesh over the base domain. Since the approach only
usessubdivision, small featuresin the original mesh can only bere-
solved accurately by increasing the number of trianglesin the base
domain accordingly. A similar approach, albeit using A-patches,
was described by Bajaj and co-workers[1]. From the point of view
of constructing parameterizations, the main drawback of algorithms
in this class is that the number of triangles in the base domain de-
pends heavily on the geometric complexity of the goal surface.

This problem was addressed in work of Krishnamurthy and
Levoy [17]. They approximate densely sampled geometry with bi-
cubic spline patches and displacement maps. Arguing that a fully
automatic system cannot put iso-parameter lineswhere a skilled an-
imator would want them, they require the user to lay out the en-
tire network of top level spline patch boundaries. A coarseto fine
matching procedurewith relaxationisusedto arrive at ahigh quality
patch mesh whose base domain need not mimic small scale geomet-
ric features.

The principal drawback of their procedureis that the user is re-
quired to definethe entire base domain rather then only selected fea-
tures. Additionally, given that the procedure works from coarse to
fine, it is possible for the procedure to “latch” onto the wrong sur-
facein regions of high curvature [17, Figure 7].

1.1.2 Remeshing

Lounsbery and co-workers [19, 20] were the first to propose al-
gorithms to extend classical multiresolution analysis to arbitrary
topology surfaces. Because of its connection to the mathematical
foundations of wavelets, this approach has proven very attractive
(eg.[22,7,27,8,3,28]). Thecentral requirement of these methods
isthat the input mesh have subdivision connectivity. Thisis gener-
ally not true for meshesderived from 3D scanning sources.

To overcome this problem, Eck and co-workers [7] developed
an algorithm to compute smooth parameterizations of high resolu-
tion polyhedral meshes over alow face count base domain. Using
such a mapping, the original surface can be remeshed using subdi-
vision connectivity. After this conversion step, adaptive simplifica-
tion, compression, progressive transmission, rendering, and editing
become simple and efficient operations[3, 8, 28].

Eck et al. arrive at the base domain through a Voronoi tiling of the
original mesh. Using a sequenceof local harmonic maps, a param-
eterization which is smooth over each triangle in the base domain
and which meets with CO continuity at base domain edges[7, Plate
1(f)] is constructed. Runtimes for the algorithm can be long be-
cause of the many harmonic map computations. This problem was
recently addressed by Duchamp and co-workers [6], who reduced
the harmonic map computationsfrom their initial O(N?) complexity
to O(NlogN) through hierarchical preconditioning. The hierarchy
construction they employed for usein a multigrid solver is related
to our hierarchy construction.



Theinitial Voronoi tile construction relies on anumber of heuris-
ticswhich render the overall algorithm fragile (for animproved ver-
sion see[16]). Moreover, there is no explicit control over the num-
ber of trianglesin the basedomain or the placement of patch bound-
aries.

The algorithm generates only uniformly subdivided meshes
which later can be decimated through classical wavelet methods.
Many extraglobally subdivided|evelsmay be neededto resolveone
small local feature; moreover, each additional level quadruplesthe
amount of work and storage. This can lead to the intermediate con-
struction of many more triangles than were contained in the input
mesh.

1.2 Features of MAPS

Our agorithm was designed to overcome the drawbacks of previ-
ouswork as well asto introduce new features. We use a fast coar-
sification strategy to define the base domain, avoiding the potential
difficulties of finding VVoronoi tiles[7, 16]. Since our algorithm pro-
ceedsfrom fineto coarse, correspondenceproblemsfound in coarse
to fine strategies [17] are avoided, and all features are correctly re-
solved. We use conformal maps for continued remapping during
coarsification to immediately produce a global parameterization of
the original mesh. Thismapisfurther improved through theuse of a
hierarchical Loop smoothing procedure obviating the need for iter-
ative numerical solvers[7]. Since the procedureis performed glob-
ally, derivative discontinuities at the edges of the base domain are
avoided [7]. In contrast to fully automatic methods [7], the algo-
rithm supportsvertex and edgetags[14] to constrain the parameter-
ization to align with selected features; however, the user is not re-
quired to specify the entire patch network [17]. During remeshing
we take advantage of the original fineto coarse hierarchy to output
a sparse, adaptive, subdivision connectivity mesh directly without
resorting to a depth first oracle [22] or the need to produce a uni-
form subdivision connectivity mesh at exponential cost followed by
wavelet thresholding [3].

2 Hierarchical Surface Representation

In this section we describe the main components of our algorithm,
coarsification and map construction. We begin by fixing our nota-
tion.

2.1 Notation

When describing surfacesmathematically, it isuseful to separate the
topological and geometric information. To this end we introduce
some notation adapted from [24]. We denote a triangular mesh as
apair (P, X), where P isaset of N point positions p; = (X, Vi, z) €
R3with 1 < i < N, and X isan abstract simplicial complex which
contains al the topological, i.e., adjacency information. The com-
plex X is aset of subsetsof {1,...,N}. These subsets are called
simplices and come in 3 types: verticesv = {i} € X, edgese =
{i,j} € K,andfaces f =i, j,k} € X, sothat any non-empty subset
of asimplex of X isagainasimplex of X, e.g., if afaceis present
so areits edges and vertices.

Let  denote the standard i-th basis vector in RN. For each sim-
plex s, its topological realization || is the strictly convex hull of
{e |i €s}. Thus|{i}| =&, [{i, j}| isthe openline segment between
g andej, and |{i, j,k}| isan open equilateral triangle. Thetopologi-
cal redlization | K| is defined as Usc « |S|. The geometric realization
d(] %)) relies on alinear map ¢ : RN — R defined by ¢(e) = p;.
The gesulti ng polyhedron consists of points, segments, and triangles
inR>.

Two vertices {i} and {j} are neighborsif {i, |} € K. A set of
vertices is independent if no two vertices are neighbors. A set of
verticesis maximally independent if no larger independent set con-
tainsit (seeFigure 3, left side). The 1-ring neighborhood of avertex

{i} isthe set _ o
N(i) ={j [{i,]} € K}.
The outdegreeK; of avertex isits number of neighbors. The star of
avertex {i} isthe set of simplices
star(iy= | s

i€es se K

We say that |K| is atwo dimensional manifold (or 2-manifold) with
boundariesif for eachi, |star (i)| is homeomorphicto adisk (interior
vertex) or half-disk (boundary vertex) in R?. Anedgee= {i,j} is
called aboundary edgeif thereis only oneface f withe C f.

We defineaconservativecurvature estimate, K(i) = |[K1|+ |Ko| at
pi, using the principal curvaturesk1 andk,. Theseare estimated by
the standard procedureof first establishing atangent planeat p; and
then using a second degree polynomial to approximate ¢ (|star (i)]).

2.2 Mesh Hierarchies

Animportant part of our algorithm isthe construction of amesh hi-
erarchy. Theoriginal mesh (?, X) = (P-, X') issuccessively sim-
plified into a series of homeomorphic meshes (7', k') with0< | <
L, where (0, K0 is the coarsest or base mesh (see Figure 4).

Several approachesfor such mesh simplification have been pro-
posed, most notably progressive meshes (PM) [12]. In PM the ba-
sic operation is the “edgecollapse.” A sequence of such atomic op-
erationsis prioritized based on approximation error. The linear se-
guenceof edge collapsescan be partially ordered based on topolog-
ical dependence[25, 13], which defineslevelsin a hierarchy. The
depth of these hierarchies appears*reasonable” in practice, though
can vary considerably for the same dataset [13].

Our approach is similar in spirit, but inspired by the hierarchy
proposed by Dobkin and Kirkpatrick (DK) [5], which guarantees
that the number of levelsL is O(logN). While the original DK hi-
erarchy is built for convex polyhedra, we show how the ideabehind
DK can be used for general polyhedra. The DK atomic simplifi-
cation step is a vertex remove, followed by aretriangulation of the
hole.

The two basic operations “vertex remove” and “edge collapse”
are related since an edge collapse into one of its endpoints corre-
sponds to a vertex remove with a particular retriangulation of the
resulting hole (see Figure 2). The main reason we chose an algo-
rithm based on the ideas of the DK hierarchy isthat it guaranteesa
logarithmic bound on the number of levels. However, we empha-
size that the ideas behind our map constructions apply equally well
to PM type algorithms.

2.3 Vertex Removal

One DK simplification step %' — %'~1 consists of removing a
maximally independent set of vertices with low outdegree (see Fig-
ure 3). To find such a set, the original DK algorithm used a greedy
approach based only on topological information. Instead, we use
apriority queue based on both geometric and topological informa-
tion.

Atthe start of eachlevel of the original DK algorithm, noneof the
vertices are marked and the set to be removed is empty. The algo-
rithm randomly selects a non-marked vertex of outdegree |less than
12, removesit andits star from X', marksits neighborsasunremov-
able and iterates this until no further vertices can be removed. In a
triangulated surface the average outdegree of avertex is 6. Conse-
quently, no more than half of the vertices can be of outdegree 12 or
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<\

General Edge collapse operation

DD

Figure 2: Examplesof different atomic mesh simplification steps. At
the top vertex removal, in the middle half-edge collapse, and edge
collapse at the bottom.

more. Thusit is guaranteed that at least 1/24 of the vertices will be
removed at each level [5]. In practice, it turns out one can remove
roughly 1/4 of the vertices reflecting the fact that the graphis four-
colorable. Given that a constant fraction can be removed on each
level, the number of levels behavesas O(logN). The entire hierar-
chy can thus be constructed in linear time.

In our approach, we stay in the DK framework, but replace the
random selection of vertices by a priority queue based on geometric
information. Roughly speaking, vertices with small and flat 1-ring
neighborhoodswill be chosenfirst. At level |, for avertex p; € i
we consider its 1-ring neighborhood ¢(|star(i)|) and compute its
areaa(i) and estimate its curvature k(i). These quantities are com-
puted relative to %', the current level. We assign a priority to {i}
inversely proportional to a convex combination of relative areaand
curvature

MaXp, e A1) MaX et K(1)

(We found A = 1/2 to work well in our experiments.) Omitting all
vertices of outdegree greater than 12 from the queue, removal of a
constant fraction of verticesis still guaranteed. Because of the sort
implied by the priority queue, the complexity of building the entire
hierarchy growsto O(NIogN).

Figure 4 shows three stages (original, intermediary, coarsest) of
the DK hierarchy. Given that the coarsest mesh ishomeomorphicto
theoriginal mesh, it can be used asthe domain of aparameterization.

2.4 Flattening and Retriangulation

To find K'~1, we need to retriangulate the holes left by removing
the independent set. One possibility is to find a plane into which

Meshatlevell ——»  Meshatlevel I-1

Figure 3: On the left a mesh with a maximally independent set of
vertices marked by heavy dots. Each vertex in the independent set
hasits respective star highlighted. Note that the star’s of the inde-
pendent set do not tile the mesh (two triangles are left white). The

right side gives the retriangulation after vertex removal.

to project the 1-ring neighborhood ¢(|star (i)|) of aremoved vertex
¢(Ji|) without overlapping triangles and then retriangul ate the hole
in that plane. However, finding such a plane, which may not even
exist, can be expensive and involves linear programming [4].

Instead, we use the conformal map z2 [6] which minimizes met-
ric distortion to map the neighborhood of aremoved vertex into the
plane. Let {i} be a vertex to be removed. Enumerate cyclicaly
the K; vertices in the 1-ring A((i) = {jk | 1 < k < Kj} such that
{ik_1i, Jx} € K" with jo = ji, - A piecewiselinear approximation
of 22, which we denote by ;, is defined by its values for the cen-
ter point and 1-ring neighbors; namely, y;(p;) = 0 and W;(p;j,) =
rg exp(i6ca), wherer = || p; — pj, I,

K
Bk=> Z(pj ., Pi,Pj),
=1

and a= 211/8,. The advantages of the conformal map are numer-
ous: it alwaysexists, it is easy to compute, it minimizes metric dis-
tortion, and it is a bijection and thus never maps two triangles on
top of each other. Oncethe 1-ring is flattened, we can retriangulate
the hole using, for example, a constrained Delaunay triangulation
(CDT) (see Figure 5). Thistells us how to build %'-1.

When the vertex to be removed is a boundary vertex, we map to
ahalf disk by setting a = 11/6; (assuming j; and jk, are bound-
ary verticesand setting 8; = 0). Retriangulation is again performed
with aCDT.

3 Initial Parameterization

To find a parameterization, we begin by constructing a bijection
M from ¢(]K") to (] %P]). The parameterization of the original
mesh over the base domain follows from NM=1(¢(]%%))). In other
words, the mapping of a point p € ¢(|%"|) through N is a point
p° = MN(v) € (| KP|), which can be written as

p°=api+PBp;+yPk,

where {i, j,k} € KCisafaceof the base domainand a,  and y are
barycentric coordinates, i.e., a+p+y= 1.

The mapping can be computed concurrently with the hierarchy
construction. The basic ideais to successively compute piecewise
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Figure 4: Example of a modified DK mesh hierarchy. At the top
the finest (original) mesh ¢(|%"|) followed by an intermediate
mesh, and the coarsest (base) mesh ¢(]%°|) at the bottom (origi-
nal dataset courtesy University of \Washington).

linear bijections N' between ¢ (| K" |) and ¢ (| X' |) starting with 1",
which is the identity, and ending with M9 = 1.

Notice that we only need to compute the value of ' at the ver-
ticesof K. Atany other point it follows from piecewiselinearity.
Assume we are given ' and want to compute M'~1. Each vertex
{i} € K" fallsinto one of the following categories:

1. {i} € K'=%: The vertex is not removed on level | and sur-
vives on level | — 1. In this case nothing needs to be done.

n'=1(p)) =N'(p) = pi.

2. {i} € ¥' \ K¥'~1: The vertex gets removed when going from
| to| — 1. Consider the flattening of the 1-ring around p; (see
Figure 5). After retriangulation, the origin lies in atriangle
which corresponds to somefacet = { j,k,m} € €'~ and has
barycentric coordinates (a, 3, y) with respect to the vertices of
that face, i.e., o i (pj) + BHi( Pk) + YHi( Pm) (seeFigure6). In
that case, let M'=*(pi) = o pj + B P+ YPm-

3 {i} € K-\ K': The vertex was removed earlier, thus
n'(pi) = o'pj + P'pr + Y p for some triangle t' =

Lin the vicinity of verticesin X! atriangle {i, j,k} € %" can straddle
multipletrianglesin &'. In this casethe map dependson the flattening strat-
egy used (see Section 2.4).

3 space

Flattening into parameter plane

retriangulation

Figure 5: In order to removea vertex p;, its star (i) is mapped from
3-spaceto a plane using the map z2. In the plane the central vertex
isremoved and the resulting hole retriangulated (bottom right).

assign barycentric
coordinatesto old
point in new triangle

Figure6: After retriangulation of a holein the plane (see Figure5),
the just removed vertex gets assigned barycentric coordinateswith
respect to the containing triangle on the coar ser level. Smilarly, all
the finest level vertices that were mapped to a triangle of the hole
now need to bereassignedto a triangle of the coarser level.

{j’,K,m} e %1t € ', nothing needsto be done; oth-
erwise, the independent set guarantees that exactly one ver-
tex of t' is removed, say {j'}. Consider the conformal map
M (Figure 6). After retriangulation, the pj () liesin atri-
angle which corresponds to some facet = { j,k,m} € %'~1
with barycentric coordinates (a, 3, y) (black dots within high-
lighted face in Figure 6). In that case, let N'~1(p;) = a pj +
B pk+Yypm(i.e, al verticesin Figure 6 are reparameterized in
this way).

Notethat on every level, the algorithm requires a sweep through all
the vertices of the finest level resulting in an overall complexity of
O(NIogN).

Figure 7 visualizes the mapping we just computed. For each
point p; from the original mesh, its mapping M(p;) is shown with
adot on the base domain.

Caution: Given that every association between a 1-ring and its
retriangulated hole is a bijection, so is the mapping M. However,
M does not necessarily map afinest level triangle to atriangular re-
gion in the base domain. Instead the image of a triangle may be
a non-convex region. In that case connecting the mapped vertices
with straight lines can cause flipping, i.e., triangles may end up on
top of each other (see Figure 8 for an example). Two methods ex-



Figure7: Basedomain (| %°|). For each point p; fromthe original
mesh, its mapping M( p;) is shown with a dot on the base domain.

ist for dealing with this problem. First one could further subdivide
the original meshin the problem regions. Given that the underlying
continuous map is a bijection, thisis guaranteed to fix the problem.
Thealternativeisto use some brute forcetriangle unflipping mecha-
nism. We havefound thefollowing schemeto work well: adjust the
parameter values of every vertex whose 2-neighborhood contains a
flipped triangle, by replacing them with the averaged parameter val-
ues of its 1-ring neighbors[7].

image of vertices

image of triangle

Figure 8: Although the mapping N from the original mesh to a
base domain triangle is a bijection, triangles do not in general get
mappedto triangles. Threeverticesof the original mesh get mapped
to a concave configuration on the base domain, causing the piece-
wise linear approximation of the map to flip the triangle.

3.1 Tagging and Feature Lines

In the algorithm described so far, there is no a priori control over
which vertices end up in the base domain or how they will be con-
nected. However, often there are features which one wants to pre-
servein the base domain. Thesefeatures can either be detected au-
tomatically or specified by the user.

We consider two types of features on the finest mesh: vertices
and pathsof edges. Guaranteeing that a certain vertex of the original
mesh ends up in the base domain is straightforward. Simply mark
that vertex as unremovable throughout the DK hierarchy.

We now describe an algorithm to guarantee that a certain path of
edgeson the finest mesh gets mapped to an edge of the base domain.
Let{v;| 1<i<I} C X' beasetof verticesonthefinest level which
form apath, i.e,, {vi,vi;1} isan edge. Tag all the edgesin the path
asfeature edges. Firsttag v, andv,, so called dart points[14], asun-
removable so they are guaranteed to end up in the base domain. Let
v; bethefirst vertex on theinterior of the path which gets marked for
removal in the DK hierarchy, say, when going from level | to | — 1.
Because of the independent set property, vi_; and v;,; cannot be
removed and therefore must belong to '~1. When flattening the
hole around v;, tagged edges are treated like a boundary. We first
straighten out the edges {v;_1,vi} and {v;,vi; 1} along the x-axis,

3Space§
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Figure9: When a vertexwith two incident feature edgesisremoved,
we want to ensurethat the subsequent retriangulation adds a new
feature edgeto replacethe two old ones.

Y

and use two boundary type conformal maps to the half disk above
and below (cf. the last paragraph of Section 2.4). When retriangu-
lating theholearound v;, weput theedge {v;_1,Vi1}in %1 tagit
as afeature edge, and compute a CDT on the upper and lower parts
(seeFigure 9). If we apply similar procedureson coarser levels, we
ensurethat v, and v, remain connected by apath (potentially asingle
edge) on the base domain. This guarantees that I maps the curved
feature path onto the coarsest level edge(s) between v, andv;.

In general, there will be multiple feature paths which may be
closed or cross each other. Asusual, avertex with more than 2 inci-
dent feature edgesis considered a corner, and marked as unremov-
able.

The feature vertices and paths can be provided by the user or de-
tected automatically. As an example of the latter case, we consider
every edge whose dihedral angle is below a certain threshold to be
afeature edge, and every vertex whose curvature is above a certain
threshold to be afeature vertex. An exampleof this strategy isillus-
trated in Figure 13.

3.2 A Quick Review

Before we consider the problem of remeshing, it may be helpful
to review what we have at this point. We have established an ini-
tial bijection M of the original surface ¢(| %) onto a base domain
&(]K°|) consisting of a small number of triangles (e.g. Figure 7).
We use asimplification hierarchy (Figure 4) in which the holes af-
ter vertex removal areflattened and retriangulated (Figures5and 9).
Original mesh points get successively reparametrized over coarser
triangulations (Figure 6). The resulting mapping is always a bijec-
tion; triangle flipping (Figure 8) is possible but can be corrected.

4 Remeshing

In this section, we consider remeshing using subdivision connectiv-
ity triangulations since it is both a convenient way to illustrate the
properties of a parameterization and is an important subject in its
own right. In the process, we compute a smoothed version of our
initial parameterization. We also show how to efficiently construct
an adaptive remeshing with guaranteed error bounds.

4.1 Uniform Remeshing

Since I is a bijection, we can use N~ to map the base domain
to the original mesh. We follow the strategy used in [7]: regu-



larly (1:4) subdivide the base domain and use the inverse map to
obtain a regular connectivity remeshing. This introduces a hierar-
chy of regular meshes (Q™,®™) (Q isthe point set and & isthe
complex) obtained from m-fold midpoint subdivision of the base
domain (7%, x°) = (Q° % °). Midpoint subdivision implies that
all new domain points lie in the base domain, Q™ ¢ ¢(|®?|) and
IR™M = |RO. All vertices of R™\ R have outdegree 6. The
uniform remeshing of the origina mesh on level m is given by
(M=HQM), &™.

We thus need to compute M~(q) where g is a point in the base
domain with dyadic barycentric coordinates. In particular, we need
to compute which triangle of (| %" |) contains M—(q), or, equiv-
alently, which triangle of M(¢(|%t|)) contains g. This is a stan-
dard point location problem in an irregular triangulation. We use
the point location algorithm of Brown and Faigle [2] which avoids
looping that can occur with non-Delaunay meshes[10, 9]. Oncewe
havefound the triangle {i, j,k} which containsq, we can write q as

q=oan(p)+BN(p;)+yN(pg),

and thus »
M=) = api+Bpj+ypc € d(|K")).

Figure 10 shows the result of this procedure: a level 3 uniform
remeshing of a 3-holed torus using the NM—1 map.

A note on complexity: The point location algorithm is essen-
tially awalk on the finest level mesh with complexity O(+/N). Hi-
erarchical point location algorithms, which have asymptotic com-
plexity O(logN), exist [15] but have a much larger constant. Given
that we schedulethe queriesin a systematic order, we almost always
have an excellent starting guess and observe a constant number of
steps. In practice, the finest level “walking” algorithm beats the hi-
erarchical point location algorithms for all meshes we encountered
(up to 100K faces).
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Figure 10: Remeshing of 3 holed torus using midpoint subdivision.
The parameterization is smooth within each base domain triangle,
but clearly not across base domain triangles.

4.2 Smoothing the Parameterization

It is clear from Figure 10 that the mapping we used is not smooth
acrossglobal edges. Oneway to obtain global smoothnessisto con-
sider amap that minimizes aglobal smoothnessfunctional and goes
from ¢ (| K"|) to | K| rather than to ¢ (|%°|). This would require
an iterative PDE solver. We have found computation of mappings
to topological realizations that live in a high dimensional space to
be needlessly cumbersome.

Instead, we useamuch simpler and cheaper smoothing technique
based on Loop subdivision. The main idea is to compute N~ at
a smoothed version of the dyadic points, rather then at the dyadic
points themselves (which can equivalently be viewed as changing

the parameterization). To that end, we defineamap £ from the base
domainto itself by the following modification of Loop:

o |f al the points of the stencil needed for computing either a new
point or smoothing an old point are inside the same triangle of
the base domain, we can simply apply the Loop weights and the
new pointswill bein that same face.

e |f the stencil stretches across two faces of the base domain, we
flatten them out using a “ hinge” map at their common edge. We
then computethe point’s position in thisflattened domain and ex-
tract thetrianglein which the point liestogether with its barycen-
tric coordinates.

o |f the stencil stretches across multiple faces, we use the confor-
mal flattening strategy discussed earlier.

Notethat the modificationsto Loop force £ to map the base domain
onto thebasedomain. We emphasizethat we do not apply theclassic
L oop scheme (which would produce a*“ blobby” version of the base
domain). Nor are the surface approximations that we later produce
Loop surfaces.

The composite map M~ o £ is our smoothed parameterization
that maps the base domain onto the original surface. The m-th level
of uniform remeshing with the smoothed parameterizationis (I -1
L(Q™M), ™), whereQ™, asbefore, are the dyadic pointson the base
domain. Figure 11 showsthe result of this procedure: alevel 3 uni-
form remeshing of a 3-holed torus using the smoothed parameteri-
zation.

When the mesh is tagged, we cannot apply smoothing acrossthe
tagged edgessincethis would break the alignment with the features.
Therefore, we use modified versions of Loop which can deal with
corners, dart points and feature edges[14, 23, 26] (see Figure 13).
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Figure 11: The same remeshing of the 3-holed torusasin Figure 10,
but this time with respect to a Loop smoothed parameterization.
Note: Because the Loop scheme only enters in smoothing the pa-
rameterization the surface shown is still a sampling of the original
mesh, not a Loop surface approximation of the original.

4.3 Adaptive Remeshing

One of the advantages of meshes with subdivision connectivity is
that classical multiresolution and wavelet algorithms can be em-
ployed. The standard wavelet algorithms used, e.g., in image com-
pression, start from the finest level, compute the wavelet trans-
form, and then obtain an efficient representation by discarding small
wavelet coefficients. Eck et al. [7, 8] aswell asCertain et al. [3] fol-
low a similar approach: remesh using a uniformly subdivided grid
followed by decimation through wavelet thresholding. Thishasthe
drawback that in order to resolve a small local feature on the origi-
nal mesh, one may need to subdivideto avery finelevel. Eachextra
level quadruples the number of triangles, most of which will later
be decimated using the wavelet procedure. Imagine, e.g., a plane
which is coarsely triangulated except for a narrow spike. Making



the spike width sufficiently small, the number of levels needed to
resolveit can be made arbitrarily high.

In this section we present an algorithm which avoidsfirst building
afull tree and later pruning it. Instead, we immediately build the
adaptive mesh with a guaranteed conservative error bound. Thisis
possible becausethe DK hierarchy containsthe information on how
much subdivision is needed in any given area. Essentially, we let
theirregular DK hierarchy “drive” the adaptive construction of the
regular pyramid.

We first compute for each trianglet € %° the following error
quantity:

E(t) ne@mgﬁﬁm¢mnmﬁ“”¢m0)
This measuresthe distance between one triangle in the basedomain
and the vertices of the finest level mapped to that triangle.

The adaptive algorithm is now straightforward. Set a certain rel-
ative error threshold . Compute E(t) for all triangles of the base
domain. If E(t)/B, where B is the largest side of the bounding box,
is larger than €, subdivide the domain triangle using the Loop pro-
cedure above. Next, we need to reassign vertices to the triangles of
level m= 1. Thisis done as follows: For each point p; € ¢~ con-
sider the triangle t of %° to which it it is currently assigned. Next
consider the4 children of t onlevel 1, t; with j =0, 1,2, 3 and com-
pute the distance between p; and each of the ¢(|t;|). Assign p; to
the closest child. Oncethefinest level verticeshave beenreassigned
to level 1 triangles, the errors for those triangles can be computed.
Now iterate this procedure until all triangles have an error below the
threshold. Becauseall errors are computed from thefinest level, we
are guaranteed to resolve all features within the error bound. Note
that we are not computing the true distance between the original ver-
ticesand agiven approximation, but rather an easy to compute upper
bound for it.

In order to be able to compute the Loop smoothing map £ on an
adaptively subdivided grid, the grid needsto satisfy a vertexrestric-
tion criterion, i.e., if avertex hasatriangle incident to it with depth
i, then it must have a complete 1-ring at level i — 1 [28]. Thisre-
striction may necessitate subdividing sometrianglesevenif they are
below the error threshold. Examples of adaptive remeshing can be
seenin Figure 1 (lower left), Figure 12, and Figure 13.
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Figure 12: Example remesh of a surface with boundaries.

5 Results

We have implemented MAPS as described above and applied it to
a number of well known example datasets, as well as some new
ones. The application was written in C++ using standard compu-
tational geometry data structures, see e.g. [21], and all timings re-

ported in this section were measured on 2200 M Hz PentiumPro per-
sonal computer.
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Figure 13: Left (top to bottom): three levels in the DK pyramid,
finest (L = 15) with 12946, intermediate (I = 8) with 1530, and
coarsest (I = 0) with 168 triangles. Feature edges, dart and corner
verticessurviveon the basedomain. Right (bottomto top): adaptive
meshwith € = 5% and 1120 triangles (bottom), € = 1% and 3430tri-
angles (middle), and uniform level 3 (top). (Original dataset cour-
tesy University of Washington.)

The first example used throughout the text is the 3-holed torus.
The original mesh contained 11776 faces. These were reduced in
the DK hierarchy to 120 faces over 14 levelsimplying an average
removal of 30% of the faces on a given level. The remesh of Fig-
ure 11 used 4 levels of uniform subdivision for atotal of 30720 tri-
angles.

Theoriginal sampled geometry of the 3-holedtorusis smoothand
did not involve any feature constraints. A more challenging case
is presented by the fandisk shown in Figure 13. The original mesh
(top left) contains 12946 triangles which were reduced to 168 faces
in the base domain over 15 levels (25% average face removal per
level). Theinitial mesh had all edges with dihedral angles below



Figure 14: Example of a constrained parameterization based on user input. Top: original input mesh (100000 triangles) with edge tags su-
perimposed in red, green lines show some smooth iso-parameter lines of our parameterization. The middle shows an adaptive subdivision
connectivity remesh. The bottom one patches correspondingto the eye regions (right eye was constrained, left eye was not) are highlighted to
indicate the resulting alignment of top level patcheswith the feature lines. (Dataset courtesy Cyberware.)

75° tagged (1487 edges), resulting in 141 tagged edgesat the coars-
estlevel. Adaptiveremeshingto withine = 5% and € = 1% (fraction
of longest bounding box side) error results in the meshes shownin
the right column. The top right image shows a uniform resampling
tolevel 3, in effect showing iso-parameter lines of the parameteriza-
tion used for remeshing. Note how the iso-parameter lines conform
perfectly to the initially tagged features.

Thisdataset demonstratesone of the advantagesof our method—
inclusion of feature constraints—over the earlier work of Eck et
al. [7]. Inthe original PM paper [12, Figure 12], Hoppe shows the
simplification of the fandisk based on Eck’s algorithm which does
not use tagging. He points out that the multiresolution approxima-
tion is quite poor at low triangle counts and consequently requires
many triangles to achieve high accuracy. The comparison between
our Figure 13 and Figure 12 in [12] demonstratesthat our multires-
olution algorithm which incorporates feature tagging solves these
problems.

Another example of constrained parameterization and subse-
quent adaptive remeshing is shown in Figure 14. The origina
dataset (100000 triangles) is shown on the left. The red lines in-
dicate user supplied feature constraints which may facilitate sub-
seguent animation. The green lines show some representative iso-
parameter lines of our parameterization subject to the red fea-
ture constraints. Those can be used for computing texture coordi-
nates. The middleimage shows an adaptive subdivision connectiv-
ity remesh with 74698 triangles (¢ = 0.5%). On the right we have
highlighted a group of patches, 2 over the right (constrained) eye
and 1 over the left (unconstrained) eye. This indicates how user
supplied constraints force domain patchesto align with desired fea-
tures. Other enforced patch boundaries are the eyebrows, center of
the nose, and middle of lips (see red lines in left image). This ex-
ampleillustrates how oneplacesconstraintslike Krishnamurthy and
Levoy [17]. We remove the need in their algorithms to specify the

entire base domain. A user may want to control patch outlines for
editing in oneregion (e.g., on theface), but may not care about what
happensin other regions (e.g., the back of the head).

We present afinal examplein Figure 1. Theoriginal mesh (96966
triangles) is shown on the top left, with the adaptive, subdivision
connectivity remesh on the bottom left. This remesh was subse-
quently edited in a interactive multiresolution editing system [28]
and the result is shown on the bottom middle.

6 Conclusions and Future Research

We have described an algorithm which establishes smooth parame-
terizations for irregular connectivity, 2-manifold triangular meshes
of arbitrary topology. Using avariant of the DK hierarchy construc-
tion, we simplify the original mesh and use piecewiselinear approx-
imations of conformal mappings to incrementally build a parame-
terization of the original mesh over alow face count base domain.
This parameterization is further improved through a hierarchical
smoothing procedure which is based on Loop smoothing in param-
eter space. Theresulting parameterizations are of high quality, and
we demonstrated their utility in an adaptive, subdivision connectiv-
ity remeshing algorithm that has guaranteed error bounds. The new
meshes satisfy the requirements of multiresolution representations
which generalize classical wavelet representations and are thus of
immediate use in applications such as multiresolution editing and
compression. Using edge and vertex constraints, the parameteriza-
tions can beforced to respect feature lines of interest without requir-
ing specification of the entire patch network.

In this paper we have chosen remeshing as the primary applica-
tion to demonstrate the usefulness of the parameterizationswe pro-
duce. The resulting meshes may also find application in numeri-
cal analysisalgorithms, such asfast multigrid solvers. Clearly there



Dataset Inputsize Hierarchy Levels P0size Remeshing Remesh Output size

(triangles) creation (triangles) tolerance creation  (triangles)
3-hole 11776 18 (s) 14 120 (NA) 8(s) 30720
fandisk 12946 23(s) 15 168 1% 10(s) 3430
fandisk 12946 23(s) 15 168 5% 5(s) 1130
head 100000 160 (s) 22 180 0.5%  440(s) 74698
horse 96966 163 (s) 21 254 1% 60 (s) 15684
horse 96966 163 (s) 21 254 05% 314(s) 63060

Table 1: Selected statistics for the examplesdiscussed in the text. All times arein secondson a 200 MHz PentiumPro.

are many other applications which benefit from smooth parameter-
izations, e.g., texture mapping and morphing, which would be in-
teresting to pursue in future work. Because of its independent set
selection the standard DK hierarchy creates topologically uniform
simplifications. We have begun to explore how the selection can
be controlled using geometric properties. Alternatively, one could
use aPM framework to control geometric criteria of simplification.
Perhaps the most interesting question for future research is how to
incorporate topology changesinto the MAPS construction.
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