Computing the Maximum Bichromatic
Discrepancy, with applications to Computer
Graphics and Machine Learning

David P. Dobkin 1

Department of Computer Science, Princeton University,
35 Olden St., Princeton, NJ 08540, USA

e-mail: dpd@cs.princeton.edu

Dimitrios Gunopulos *

Department of Computer Science, Princeton University,
35 Olden St., Princeton, NJ 08540, USA

e-mail: dg@cs.princeton.edu

Wolfgang Maass

Institute for Theoretical Computer Science,
Technische Universitaet Graz,
Klosterwiesgasse 32/2, A-8010 Graz, Austria
e-mail: maass@igi.tu-graz.ac.at

Abstract

Computing the maximum bichromatic discrepancy is an interesting theoretical problem
with important applications in computational learning theory, computational geometry and
computer graphics. In this paper we give algorithms to compute the maximum bichromatic
discrepancy for simple geometric ranges, including rectangles and halfspaces. In addition,
we give extensions to other discrepancy problems.

1. Introduction

The main theme of this paper is to present efficient algorithms that solve the problem
of computing the maximum bichromatic discrepancy for axis oriented rectangles. This
problem arises naturally in different areas of computer science, such as computational

!The research work of these authors was supported by NSF Grant CCR93-01254 and the Geometry
Center.

learning theory, computational geometry and computer graphics ([Ma], [DG]), and has
applications in all these areas.

In computational learning theory, the problem of agnostic PAC-learning with simple
geometric hypotheses can be reduced to the problem of computing the maximum bichro-
matic discrepancy for simple geometric ranges. In computational geometry, efficient com-
putation of the discrepancy of a two-colored point set is useful for the construction of
e-approximations of point sets. Finally in computer graphics, the maximum numerical dis-
crepancy of a point set is a good measure on how well a sampling pattern captures details
in a picture.

In the next three parts of the introduction we give the background and present three
views of the same algorithmic problem from the perspective of learning theory (the min-
imizing disagreement problem), computer graphics (the numerical discrepancy) and com-
putational geometry (the bichromatic discrepancy). The subject of section 2 is Algorithm
2, an O(n?logn) algorithm that computes the maximum bichromatic discrepancy in two
dimensions. Here, we first prove that that the minimizing disagreement problem and the
computation of the maximum bichromatic discrepancy are equivalent. Then, we develop
Algorithm 2 working in one and then in two dimensions. In section 3 we modify Algorithm
2 to compute the maximum numerical discrepancy. In section 4 we give an approximation
algorithm, and we extend our results in higher dimensions.

Finally, we note here that we are using the RAM model of computation ([HU], [P])
throughout this paper.

1.1 Agnostic PAC-Learning and the minimizing disagreement problem

One goal of computational learning theory is to provide tools for the design and analysis
of learning algorithms that provide satistfactory solutions for real-world learning problems.
There are a lot of experimental results regarding the performance of various heuristic learn-
ing algorithms on a number of "benchmark”-datasets for real world classification problems
([Min], [WK90], [WGT], [WK91], [BN], [Hol), but the set of learning algorithms that are
examined in these applications is virtually disjoint from the set of learning algorithms that
are traditionally considered in computational learning theory.

Haussler in [Hau] provided an important link between theoretical and applied machine
learning, when he introduced a variation of Valiant’s ([V84]) well known model for Probably
Approximately Correct learning ("PAC-learning”). The new model, agnostic PAC-learning,
provides an adequate format for the generic formulation of real-life classification problems.
The shortcoming of the original PAC-learning model of Valiant is that it relies on the
assumption that the labels of the training examples arise from a target concept with an
apriori known specific simple structure, an assumption rarely met in practice. Valiant later
extended the basic model to include the possibility that some labels come from noise rather

than from the target concept. However, so far positive learning results in this model have
been proven only under the assumption that the noise is of specific structure ([AL], [KS])
or that the percentage of the noisy labels is very small in comparison to the desired error
bound ¢ of the learner.

In the agnostic PAC-learning model of Haussler we assume that the learner gets a
sequence of training examples, each consisting of an instance + € X and an outcome (we
will also call it a label) y € Y. The sets X and Y are arbitrary sets, called instance
space and outcome space respectively. However for the most part of this paper we will set
Y = {0,1}. The examples are generated according to an arbitrary distribution D on X xY
unknown to the learner. In a real-world application, D may simply reflect the distribution
of data as they occur in nature (possibly including contradictions, i.e. for some z € X both
(z,0) and (z,1) may occur as examples) without assuming that the labels are generated
by any rule. The learner is also given a set H of hypotheses. Fach hypothesis H € H is a
function from X to {0, 1}, and we will also call it a decision rule. The true error Errorp(H)
of a hypothesis H is:

Errorp(H) = Ey pyep(|H(x) — b])

or in other words, the probability that H fails to predict the label b of an example (z, b)
drawn according to D.

The goal of the learner is to compute, for given parameters ¢,6 > 0, a hypothesis
H* € 'H whose true error Errorp(H*) is with probability at least 1 — ¢ not larger than
€ + infgey Errorp(H).

To achieve this goal, the learner is allowed to specify a minimum size m(e,6) for the
training sequence. So the input for the computation of H* by the learner is a training
sequence T' of at least m(e, 6) examples that are drawn from X x {0,1} according to D.
This input T" may be atypical for the actual distribution D, so we allow the learner to fail
with probability at most 6.

A learner which can carry out this task for any distribution D over X x {0, 1} is called
an efficient agnostic PAC-learner for hypothesis class H if its sample bound m(e, §) and its
number of computation steps can be bounded by a polynomial in the parameters involved
(in particular in 1/e and 1/6).

For a given training sequence 1" = {{xz;,b;)|1 < ¢ < n} and hypothesis H, we define the
empirical error:

Ervorr(H) = [{il((x:,b) € T) A (H(x:) # b)}|/n

that is, the number of positive (labeled 1) examples outside of H plus the number of neg-
ative (labeled 0) examples inside H over the size of the set. The empirical error measures
how well a hypothesis predicts D for the given training sequence. The following two uni-
form convergence results provide a connection (first given by Haussler, [Hau]) between the
required size of the training sequence and the difference of true and empirical errors. They
say that we can bound the difference between the true error and the empirical error (with

3

high probability) if we pick a large enough training sequence at random. Thus, if we have a
random training sequence large enough, we can compute the empirical error of any H € 'H
and obtain in this way a good approximation of the true error. The first result is applicable
when the set H is finite, and the second when it has a finite VC-dimension.

l. Theorem 1 in [Hau] states that for any sample 7" with at least m(¢,¢) = (In |H| +
In(2/6))/(2€*) examples drawn with regard to some arbitrary distribution D over
X x {0,1}, the following holds with probability at least 1 — é:

VH € H (|Errorr(H) — Errorp(H)| < ¢)

2. A recent result by Talagrand ([T], which slightly improves [Hau]) implies that under
some rather harmless measurability conditions, the same claim holds for

m(e,§) = (VCdim(H)(In K 4+ Inln 2K + In(1/¢) + In(1/8))/(2¢*)

where VCdim(H) is the VC-dimension of H, and K is some absolute constant that
is conjectured to be not larger than 1000.

These results show that in order to prove a positive result for efficient agnostic PAC-
learning with a specific hypothesis class H C 2% of bounded VC-dimension, it suffices
to design an efficient algorithm for a related finite optimization problem, for which an
efficient solution is also very desirable from the point of view of applied machine learning:
the minimizing disagreement problem for H. This is the problem of computing, for any
given finite training sequence T of labeled points, some hypothesis H € H whose empirical
error is minimal among all hypotheses in H . An algorithm that solves the minimizing
disagreement problem for H is, together with the bounds for the minimum number of
training examples given above, an agnostic PAC-learner for hypothesis class H. By the
same reasoning, an efficient ¢;-approximation algorithm for the minimizing disagreement
problem for H can produce a hypothesis H with true error up to ¢; + € from the optimal.

It should be pointed out that Kearns et al ([KSS]) have shown that for any hypothesis
class H, the existence of an efficient algorithm for the minimizing disagreement problem for
‘H is in fact also a necessary condition for efficient agnostic PAC-learning with hypothesis
class H. There are cases where the minimizing disagreement problem, and therefore efficient
agnostic PAC-learning, is very hard. For example it is NP-hard to solve the problem for
the class of monomials ([KSS]) and halfspaces in arbitrary dimensions ([HSV]).

In this paper we look at the minimizing disagreement problem when the class of hy-
potheses is the set R of axis aligned, but otherwise arbitrary, rectangles. A rectangular
hypothesis R € R defines a natural function from X to {0,1}. R(z) = 1 if x lies in the

interior of R, and R(z) = 0 otherwise. The problem is, given a labeled training sequence T'

(in two dimensions), find the rectangular hypothesis R that minimizes the empirical error
(Fig. 1):

%27% Errorr(R)

In the following sections we give an O(n*logn) solution to this problem. It was previously
studied by Lubinsky, who gives a cubic algorithm for it ([L]). It is easy to show that the VC
dimension of R is finite (see §1.3) and therefore such an algorithm gives an efficient agnostic
PAC-learner for rectangular hypotheses. We also consider related minimizing disagreement
problems, in particular for the union of two disjoint rectangles, the complement of rectangles
and unions of rectangles, and halfspaces in low dimensions.

Figure 1: The hypothesis A minimizes the empirical error for the point set shown (circles are
labeled 1, and squares are labeled 0, A fails to predict the filled point).

Simple hypotheses classes of this type have turned out to be quite interesting from the
point of view of applied machine learning. Weiss et al ([WK90], [WGT], [WK91]) have
shown through experiments that for many of the standard benchmark datasets a short
rule that depends on only two of the attributes, and which is a boolean combination of
expressions of the form “a; > ¢” or “a; = ¢”, provides the best available prediction-rule.
For example it is reported by Weiss and Kulikowski ([WK91]) that for their appendicitis
dataset the complement of a rectangle (in 2 of the 8 attributes of the particular dataset)
is the prediction rule that performs best. Finally we would like to point out that optimal
hypotheses of a simple type like the ones considered in this paper have the additional
advantage that they provide a human user valuable heuristic insight into the structure of
a real-world learning problem. Our goal is to contribute tools for the design of algorithms
that compute optimal prediction rules of this kind.

1.2 Numerical discrepancy and sampling patterns in graphics

The importance of the sampling technique in computer graphics is clearly demonstrated
in the following examples.

The synthesis of realistic images of scenes is one of the most important applications
of computer graphics. Often the method of choice to produce the image of a computer
modeled scene is ray tracing. In ray tracing’s basic form we find the value of each pixel by
sampling the radiance at a set of points in the area of the pixel. For each sample we cast
a ray in the computer modeling scene and we try to trace it to light sources. The value
of the pixel is then computed from a combination, typically averaging, of the value of the
samples. In distributed ray tracing we are sampling in higher dimensions to produce other
effects, for example motion blurring or depth of view perception. The idea in ray tracing is
to find an approximate solution of the rendering equation, an integral equation derived by
Kajiya ([Ka]). Instead of solving the continuous problem, we solve a approximate discrete
version by using a set of samples. The error in this approximation, and consequently the
quality of the picture, depends on how well the sampling point set approximates the area
function. Therefore the error depends both both on the size and the quality of the sampling
point set.

One of the most general ways of attacking antialiasing is supersampling. In this ap-
proach we sample the picture at a rate much higher than the pixel rate. So there are many
samples (called supersamples) in each pixel, and to compute the pixel values we resample
by averaging the supersamples within each pixel area. If we define the points we are sam-
pling using a uniform pattern we get very visible aliasing artifacts like the Moire patterns.
Therefore a stochastic or a semi-random point set is preferable because it produces less
prominent random noise.

A number of different approaches have been proposed to find good quality sampling
patterns. Mitchell ([Mit], see also [DM]) includes an extensive search for good patterns,
and shows that their use is important in practice. For example, one approach is to use
sampling patterns with high frequency spectrum. These patterns drive aliasing noise to
higher frequencies, where it is less visible, and can be reduced with supersampling. One
promising approach is the application of the theory of discrepancy or irregularities of dis-
tribution, introduced by Beck and Chen ([BC]), and applied to computer graphics first by
Shirley ([S]) and Niederreiter ([N92]). The discrepancy theory focuses on the problem of
approximating one measure (typically a continuous one) with another (typically a discrete
one). It’s main application is in Quasi Monte-Carlo numerical integration, where we use a
point set in order to apply finite-element techniques ([N78], see also [WW], and [Pa] for an
application in finance).

In our graphics applications we want to approximate the area function (or a weighted
area function) and our objective is to find a sampling pattern that provides good coverage
for all kinds of images. Assume that we have a sample set S of points in [0,1]¢. Let F be

6

a family of regions in [0, 1]%. For any region R in F, let u(R) be the Euclidian measure of
RN[0,1]¢ (the area of R), and us(R) be the discrete measure |R N S|/|S| (the fraction of
S in R). Then the numerical discrepancy of R with respect to S is:

Ds(R) = |p(R) — ps(R)]
and the mazimum numerical discrepancy of S with respect to the family F is:

MaxD(S,F) = r}r%lg}((Ds(R))

Discrepancy is a geometric data structures problem of broader interest. The problems that
arise typically require the introduction of new techniques or extensions of existing ones
([dB], [DM], [DE]). Intuitively it is a good quality measure for sampling point sets because
it provides a direct measurement on how well a given pattern estimates certain simple
integral types. Ideally we would like to compute the maximum numerical discrepancy
for the most general model, where the set of regions F is the family of convex polygons.
While this problem cannot be done in reasonable complexity, other families provide useful
approximations. Such families include halfspaces, stripes and axis aligned left anchored
rectangles.

Figure 2: The rectangle A maximizes the numerical discrepancy for the point set shown (the
filled points are the ones inside A).

The family of regions that we will consider in the following sections is the set R of
d-dimensional axis-aligned boxes (rectangles) in [0,1]?. We will concentrate on the two-
dimensional case (Fig. 2). This model, the rectangle discrepancy, is a good approximation
to the real problem of interest, because in two dimensions it gives a good measure on how

well a sample pattern, when applied to the area of one or more pixels, captures small
details in the picture. Results by Koksma ([Ko|) and Traub and Wozniakowski ([TW])
which show that the error in evaluating an integral (under bounded variation conditions)
is proportional to the discrepancy of the sampling point set, further justify its use.

A lot of work has to be done to produce point sets with low discrepancy in this model
(see [BC]), and in fact almost optimal sequences (Hammersley points, [Hal]) are known.
Algorithms that compute the exact or approximate maximum numerical discrepancy of
point sets are useful however to compare point sets, to find patterns with very low discrep-
ancy and to produce point sets when other properties (for example a random distribution)
are also important.

1.3 Bichromatic discrepancy and c¢-approximations

Many new results in computational geometry have used probabilistic techniques and
algorithms. Haussler and Welzl ([HW]) gave a very useful abstract framework for their
development and analysis, the concept of set systems with bounded (finite) VC-dimension.

A set system is a pair (S, R), where S is a set of points, and R is a set of subsets (we will
call them ranges) of S. For a set Y C S, we call the set system (Y, {(RNY)A(R € R)}) the
subspace induced by Y. We say that Y is shattered by R if, in the subspace induced by Y,
every possible subset of Y is a range (in other words, if [{(RNY)A (R € R)}| = 2%1). The
Vapnik-Chervonenkis dimension, or VC-dimension of the set system (5, R) is the maximum

cardinality of all shattered subsets of S ([VC]).

A subset A C S is an e-approximation for the set system (5,R) if ||A N R|/|A| —
(R|/|S|] < € for all R € R. A subset N C S is an enet for (S,R) if SN R # O
for any R € R with |R|/|S| > e. Remarkably, if (S, R) has finite VC-dimension, it has

e-approximations and e-nets with sizes independent from |S], as the following result shows:

Theorem ([HW]): Let d be fixed and let (S,R) be a set system of VC-dimension d. Then
for every € > 0, there exists an e-net for (S, R) of size O((1/€)log(1/¢)).

Set systems with finite VC-dimension occur naturally in geometry and in learning the-
ory. Let’s consider for example the set system we primarily examine in this paper. The
set S is a finite set of two dimensional points (S C [0,1]?), and for A C S, A is a range
(A € R) if and only if there exists an axis aligned rectangle that contains exactly the points
in A. It is easy to see that the VC-dimension of (S,R) is at least 4. If we pick a subset
Y with 4 points arranged in a diamond, Y is shattered by R. Suppose Y has 5 or more
points. Take the smallest enclosing axis aligned rectangle and, for each of its edges take
exactly one point that intersects it. This subset has at most 4 points and cannot be in the
subspace induced by Y because any axis aligned rectangle that contains this set of points

contains all points of Y. So the VC-dimension of our set system cannot be more than 4 (or
2d for d-dimensional points).

Because of their properties, e-nets have been used in many geometric algorithms and
applications. Their use is also instrumental in the derandomization of divide and con-
quer algorithms ([BCM]). The derandomization of random algorithms is a general problem
that allows us a better understanding of the importance of randomness as a computa-
tional resource. It also produces algorithms with guaranteed worst case performance. The
only known way to deterministically and efficiently compute e-nets is via e-approximations
(IMWW]). Recently Matousek et al ([MWW]) gave a strong connection between the dis-
crepancy of a set system, and the deterministic construction of e-approximations and e-nets.

Figure 3: The rectangle A maximizes the bichromatic discrepancy for the point set shown
(circles are mapped to +1, and squares are mapped to -1, the filled points are the ones in the
interior).

Let us define the bichromatic discrepancy first. Let (5,R) be a set system and let
x : S — R be a mapping. For a set R € R, let

A(R)= > x(2)

z€(RNS)

be the bichromatic discrepancy of R. We define the maximum bichromatic discrepancy of
x on (S,R) by:
MazA(S,x, R) = max [A(R)]
€

Usually y is a mapping to {—1,+1}, and is called a coloring of S (Fig 3). This is where
the name bichromatic comes from.

The discrepancy of (S, R) is

disc(S,R) = X:X—I>I%1—I11,+1}A(SJ X, R)
Matousek et al ([MWW]) also show that a set system with discrepancy 6 has a 26/|S|-
approximation A, with |A| = [|S|/2]. Obviously A is also a 26/|S|-net. Furthermore, this
approximation A can be constructed from the coloring that has discrepancy 6. Therefore
an algorithm that computes the maximum bichromatic discrepancy of a coloring y also
gives an accurate bound on the quality of the resulting e-approximation.

2. Computing the maximum bichromatic discrepancy

2.1 The problem

In this section we concentrate on the problem of computing the maximum bichromatic

discrepancy:
MazA(S,x,R) = max|A(R)| = max| > x(«
z€(RNS)

for a given set S, a given weight function y : S — R and the set R of axis aligned rectangles,
and finding the rectangle R with A(R) = MazA(S, x,R). For a given rectangle R € R
and for a point z € S, x € R if and only if the point x is in the interior or the boundary of
R. To simplify the definition of MaxzA(S, x,R) (and avoid the absolute value), we define
the following function:

MazA'(S,x,R) = %S%A = max > x(z
J:E (RNS)

An algorithm that computes MazA'(S, x, R) can be used to compute MazA(S, x,R) too,
since it can find a rectangle with the maximum positive discrepancy, and, if we reverse the
sign of the weights of the points the same algorithm would compute a rectangle with the
maximum negative discrepancy. One of the two rectangles must then maximize |A(R)|.
The following theorem establishes the connection between MazA’ and the minimizing
disagreement problem.

Theorem 1: Solving the minimizing disagreement problem for rectangle hypotheses for a
training sequence T is equivalent to the problem of finding the rectangle that maximizes
A for the associated set of points S and the mapping x : S — {—1,+1} which is defined
by the labels in T'.

10

Proof: Suppose we are given a sequence T' of labeled examples. Let S be the set of points
we get if we remove the labels from the examples in 7'. We use the labels to construct the
coloring x. An example labeled 1, is mapped to +1 (a red point), and an example labeled
0 is mapped to -1 (blue point). The rectangle R that maximizes A(R) = 3 ,c(pns) X(2)
maximizes the red points inside R minus the blue points inside R, so it minimizes the blue
points inside R minus the red points inside R. But the number of red points inside R is
equal to the total number of red points (a constant) minus the red points outside R, so
we have that the rectangle that maximizes A(R) = 3°,¢(rns) X(7) minimizes the number
of of blue points inside R plus the number of red points outside K. But this is equal to
Errory(R). The other direction is similar. O

The bichromatic discrepancy provides an approximation for the numerical discrepancy
model with the use of a sufficiently fine grid of blue points. It is the discrete equivalent of
the numerical discrepancy, since we measure how well a point set approximates another. In
fact, some upper bound results for the numerical discrepancy given in [BC] were obtained
via theorems for the bichromatic discrepancy. So, as we will see in section 3, an algorithm
for the bichromatic discrepancy is a good foundation to solve the numerical discrepancy
case as well.

We begin our investigation with a look at the one-dimensional case, to build intuition
and set ideas.

2.2 The 1-d case

In one dimension, axis oriented rectangles become intervals that have both endpoints
in the unit interval, and the set X is a set of n distinct numbers between 0 and 1. The
algorithm we develop computes MazA'(S, x,R) and finds the interval that maximizes A.

We consider the static case first, where both the point set S and the mapping x are
fixed and known beforehand. We assume that the point set is sorted. This assumption is
reasonable if the points are the results of experiments performed by the learner in monotone
order. If this is not the case, sorting the points is an O(nlogn) time preprocessing step of
the algorithm.

First we show that we have only a finite number of intervals to consider.
Lemma 1: MazA'(S, x,R) is maximized by an interval whose endpoints are in S.
Proof: If an interval has a free endpoint, we can move it until it meets the closest point

inside without changing the discrepancy of the interval. With the exception of the trivial
case of no red points, the interval that maximizes A cannot be empty. O

11

From this lemma we know that there are only O(n?) different intervals to consider. The
most naive algorithm would compute the discrepancy for all of them to find the maximum
bichromatic discrepancy in O(r?) time. Using an incremental algorithm we can compute
all the disrepancies in O(n?) time. Below we show that, with a splitting strategy, further
improvement is possible. First we show another simple lemma.

Lemma 2: f0<I<m<r<landm¢S, then A([l,r]) = A([l,m]) + A([rmn, r]).

Proof: Since m is not a point, each point in [/,r] has to be in exactly one of [/, m] and
[m, 7], So Fae(snig) X(%) = Zeesnim)) X(%) + Xaesnm.)) X(2) and the lemma follows. O

The following lemma shows that we can find the endpoints of the interval that maximizes
A over all intervals that contain m independently from each other.

Lemma 3: Let A = [l,r] be an interval, and take a point m € A with m ¢ S. Assume
that [z;, ;] maximizes A over all subintervals of A that contain the point m. Then [z;, m]
maximizes A over all subintervals of A that have m as their right endpoint.

Proof: ~ Suppose that there is an interval [y, (with y € A) such that A([y,m]) >

m]
A([x;,m]). From the hypothesis we know that A([y, z;]) < A([z;,z;]). From lemma 3 we
have A([z;, z;]) = A([zi,m]) + A([m, z;]) and A]([y,%]) = A(ly,m]) + A([m, z;]). From

the equalities it follows that A([y,m]) < A([z;,m]) which is a contradiction.

Similarly we can show that [m,z;] must maximize A over all subintervals whose left
endpoint is m. O

The next lemma shows that we can find the interval that maximizes A over all intervals
with a given point m as their right (or left) boundary if we split [/, r] into two parts, and
solve two subproblems.

Lemma 4: Assume that we split into interval A = [[,r] into A; = [[,m] and A, = [m,r] so
that m € S. Also assume that [z;,r] maximizes A over all subintervals of A, that have r
as their right endpoint, and that [z;, m] maximizes A over all subintervals of A; that have
m as their right endpoint. Then either [z;,r] or [z;,r] maximizes A over all subintervals of
A that have r as their right endpoint.

Proof: ~ Suppose there is a subinterval [y,r] of A such that A([y,r]) > A([z;,r]) and
A([y,r]) > A([z;,r]). Obviously y cannot be in A,, since in that case [y,r] would be
contained in A, and A([y,r]) would be at most A([z;,r]). So it has to be in A;. If we use
lemma 3, we get that A([y,m]) > A([z;,m]), a contradiction. O

This suggests that we can compute the maximum discrepancy while we are building a
tree of intervals in a hierarchical fashion. We partition [0, 1] into intervals, that we call

12

regions. For each region A we compute three maxima. A,,,, is the interval that maximizes
A over all subintervals of A. By definition, [0, 1|4, is the maximum we are looking for.
Ajest 1s the interval that maximizes A over all subintervals of A that share A’s left endpoint.
And A,ign: is the interval that maximizes A over all subintervals of A that share A’s right
endpoint.

Lemma 5: Assume L and R are adjacent non-overlapping regions that are merged to form
LR. Then LR, LRi.s; and LR,;,;; can be computed in constant time from R, .., Riese,
Rrighta Lmaa:a Lleft and Lright-

Proof: From lemma 3 we know that LR, 1s either L,,,p or Rp0p OF Lyjgne U Rigge, s0
we can compute it in constant time. From lemma 4 we know that LR, is either L; s or
LU Ry.g;, and LR,y 1s either R, n, or Lyigp: U R. It follows that we can perform a merge
operation in constant time. O

The algorithm to compute [0, 1],,4. halves the number of regions in each step.
Algorithm 1:

L. Partition [0, 1] into [n/2] non-overlapping regions, each properly containing at most
2 points of S, so that the boundaries of the regions are not points in S. We find the
three maxima for each of these regions.

2. Merge consecutive even and odd regions to produce half the number of new regions.
In each merge operation find the three new maxima for the new region.

3. If only [0, 1] is left, output [0, 1],,42, otherwise go back to step 2.

Theorem 2: We can compute the maximum bichromatic discrepancy of a sorted one-
dimensional point set S for any given coloring, and find an interval that maximizes the
bichromatic discrepancy, in linear time and space.

Proof: Algorithm 1 computes [0, 1], in linear time and space. It’s correctness follows
from lemmata 3 and 4. The running time of the first step is @(n) since there are O(n)
intervals, each containing a constant number of points of S. Each merge operation takes
O(1) time, and, since we halve the number of intervals in each iteration, there are a total
of ©(n) merges. In the same way we can find [0, 1],,;, (the interval that minimizes A), and
so compute the maximum bichromatic discrepancy. O

A corollary of Theorem 1 and Theorem 2 is that we can solve the minimizing disagree-
ment problem for arbitrary interval hypotheses in linear time.

13

2.3. The dynamic 1-d case

Algorithm 1 can be easily modified to be dynamic with respect to insertions and dele-
tions of points.

We explicitly construct a binary tree by subdividing the intervals, with the leaves corre-
sponding to intervals that contain a constant number of points of S. Each node corresponds
to a region, and in each node we keep the largest bichromatic discrepancy recorded in this
region and also the other two maxima, information which requires constant size per node.
The total size is thus linear.

To delete a point, we follow the path down to the leaf that contains the deleted point,
and then retrace the path to the root, recording the new values in each visited note. The
previous lemmata show that this can be done in constant time per node. Insertion is
similar.

[f we use a balanced binary tree (for example a red-black tree) each update costs O(log n)
time (where n is the current number of points), plus the time required to keep the tree
balanced. Each tree rotate is a local operation however and can be performed in constant
time, so the total time of each update is O(logn).

Theorem 3: We can recompute the maximum bichromatic discrepancy of a colored one-
dimensional point set S after an update, and find an interval that maximizes the bichro-
matic discrepancy, in O(logn) time and in linear space.

Proof: From the discussion above. O

2.4. The 2-d case

In two dimensions the input set S is a set of n points in the unit square [0,1]* and
a mapping x : S — R. To make the presentation simpler we assume that all z and y
coordinates are distinct. This is not an important restriction however.

The 2-d case builds on the one dimensional algorithm. To solve the problem we combine
a sweeping technique along the y axis with an application of the dynamic algorithm of §2.3
on the x axis. Let’s begin with some simple but important lemmata.

The following lemma (like Lemma 2) shows that we have to search among a finite
number of rectangles.

Lemma 6: There exists a rectangle that maximizes A such that all its edges pass through
a point of S.

14

Proof: Let Iaw = {(Tmin, Ymin), (Tmazs Ymin)s (Tmazs Ymaz) (Tmin, Ymaz)}, be a rectangle
that maximizes A. Suppose that it has an edge e that does not pass through a point. We
can then freely move e along the axis perpendicular to it until it meets the closest point
inside, without changing the discrepancy of the rectangle. O

It follows that there are at most O(n?*) candidates to consider in the computation of
the maximum discrepancy, and, with a smart data structure ([Me], [PS]), we can search
through this range in O(n*logn) time. We use a plane sweep technique to improve upon
it.

Let Yo0rq be the set of all y coordinates of points in S. There are O(|Y,y,rq]?) = O(n?)
different pairs of values for the y coordinates of [,,,,. For each such pair we are going to
find the rectangle that maximizes A among all rectangles with these y coordinates. The
following lemma shows that for a given pair of points the problem can be reduced to a
one-dimensional problem.

Figure 4.b: The equivalent one-dimensional problem.

Lemma 7: The problem of finding the rectangle that maximizes A, among all the rectangles
with given y coordinates, is equivalent to the problem of finding the interval that maximizes
A for a set of one-dimensional points with similar cardinality.

15

Proof: Assume that the fixed y-coordinates are y;, y;, with y, < y; (Fig. 4).

Let L, = {(zi,ys), (xj,y), (xj,y:), (xi,y¢)} be the rectangle that maximizes A for all
xi, xj, x; < x;. By the definition, A(lnar) = Xog(snime) X(2)- But SN Lhe =
{(xk,yx) | xr € [wi, 2] and yr € [ys,y¢]}. Obviously only the points with y coordinates
between y;, and y; have to be considered in the computation of 7,,.

Now consider the set Sy,) = {=x | (zr,yx) € S and yi € [ys, ye)}. Let Apuw = [z, 2]
be the interval that maximizes A for the set Sy, ., and the restriction of the original x
to the new set. Then take the rectangle I' that is defined by A, and [ys,y:] (that is,
I'={(z1,y), (xr,yp), (2, 9¢), (x1,9:) }). Since I, is maximum, we have that A(7,,) > A(I).
But from the construction of Sy, ,,) we have that A([z;, z;]) = A(L,,) and A(") = A(Anee)-
Finally we have that A, = [z, %,] is a maximum and so A([z;, z;]) < A([z, z,]). It

follows that A([z;,z;]) = A([z,z,]). O

Lemma 7 shows that we can easily compute the maximum rectangle when the y coor-
dinates are fixed by a pair of points. There are a total of O(n?) pairs, and we can search
through all of them using the dynamic linear algorithm of §2.3.

The following algorithm finds the rectangle that maximizes A for an input set S C [0, 1]?
and a coloring y.

Algorithm 2:

1. Compute Y,,.-4 and sort it.
2. For each element y; of Y,,,.4 do:

(a) Find the set S; = {(z;,y;) | (z;,y;) € S and y; <y;} and sort it on the y’s.
(b) While S; is not empty, do:
i. Remove from S; the point (z;,y;) with the smallest y coordinate, and insert
z; into the region.
ii. Use the dynamic linear algorithm to find the rectangle that maximizes A
over all rectangles that have y coordinates between y; and y;.

iii. If the new value is larger than the largest seen so far, record the rectangle.

3. Return the best rectangle found.

Theorem 4: We can compute the maximum bichromatic discrepancy of a set S (|5
n) with an arbitrary coloring x, and find an axis aligned rectangle that maximizes the
bichromatic discrepancy, in O(n? logn) time and O(n) space.

16

Proof: The outlined algorithm finds the maximum of A. Its correctness follows from
lemmata 6 and 7. The algorithm considers all pairs of points. For each one it finds the
rectangle that maximizes A while it contains the lower point. In the inner loop of the
algorithm we use the dynamic algorithm of §2.3 for the left and the right region separately.

For the running time, we analyze each step. Step 1 takes O(nlogn) time and then
step 2 is executed O(n) times. Step 2.a takes O(nlogn) time and 2.b takes linear time.
Step 2.c is executed O(n) times. The dynamic linear algorithm takes O(logn) time for
insertions and O(logn) time for queries. In 2.c.ii we do one insertion and two queries, it
takes O(logn) time. Finally steps 2.c.i, 2.c.iii and 3 takes constant time.

The total time is O(r*logn). At each point we have to maintain the data structure for
the dynamic linear algorithm. The used space is therefore linear. O

A corollary of Theorem 1 and Theorem 4 is that we can solve the minimizing disagree-
ment problem for rectangular hypotheses in O(n?logn) time and linear space.

3. Computing the maximum numerical discrepancy

Here we extend the results of section 2 to the numerical discrepancy problem. Again
we consider the low dimension cases separately.

3.1. The static 1-D case

The input is a set S of n distinct points with coordinates 0 < 2y < ... < x, < 1. The
family R is the set of intervals in [0,1]. Following the definition of §1.2, the numerical
discrepancy of a given interval is the difference between its length and the ratio of the
points it contains, over |S|.

The problem is to find the interval that maximizes the numerical discrepancy.
We give some convenient notation first.

We define the function Count : R — N, where Count([l,r]) is the number of points
inside the interval [/, r], endpoints inclusive. We will also apply Count to open intervals,
and then Count(([,r)) gives the number of points in the open interval (/,r). For an interval
A, if z; is the point in A that is the closest to its left border, and if z; is the point in A
that is the closest to its right border, then we have Count(A) = (j — ¢+ 1). Given this,
the numerical discrepancy D of some interval A = [[,r] can be expressed as

D(A) = |(r — 1) — Count(A)/n|

17

This definition of the discrepancy gives a different expression depending on whether (r —1)
or Count(A)/n is greater, and to simplify matters we define the following two functions
that operate on intervals. The first function, Ds, computes the discrepancy of an interval
when the ratio of the points in it is smaller that the length of the interval. In this case, if
the endpoints of the interval are also in 5, it is obvious that the discrepancy increases if
we consider the equivalent open interval, and so we have:

Dy([l,r]) = (r—=1) — Count((l,r))/n

The second function, D;, computes the discrepancy of an interval when the ratio of the
points in the interval is larger than its length. In this case all points, endpoints included,
are counted, so:

Di([l,r]) = Count([l,r])/n—(r—1)
Clearly, the interval that maximizes the discrepancy must also maximize one of D, or D;.

Again it is easy to show that we only have to consider a finite number of intervals.

Lemma §: The numerical discrepancy of an one-dimensional point set S can be maximized
only by a interval with endpoints in S U {0,1} .

Proof: If a interval has a free endpoint, we can both increase and decrease its length
without changing its intersection with S, and one of the two operations has to increase the
discrepancy. O

The static one dimensional case is exactly equivalent to the bichromatic discrepancy.
We can follow the same approach and develop a linear time algorithm that computes the
maximum numerical discrepancy of an one dimensional point set.

We only state the main lemmata.

Lemma 9: f0<I<m<r<1landm¢S, then Di([l,r]) = Di([l, m]) + Di([m, r]).

Lemma 10: Let m € [l,r], m & S, and assume that [z;,x;] maximizes D; over all
subintervals of [[,r] that contain m. Then [z;, m] maximizes D; over all such subintervals
that have m as their right endpoint, and [m, z;] maximizes D; over all such subintervals
hat have m as their left endpoint.

Lemma 11: Assume that we split [[,r] into [[,m] and [m,r], (with m & S). Also assume
that [z;,r] maximizes D; over all intervals in [m,r] that have r as their right endpoint,
and that [z, m] maximizes D; over all intervals that have m as their right endpoint. Then
either [z;,r] or [¢;,r] maximizes D; over all intervals that have r as their right endpoint.

18

Theorem 5: We can compute the maximum numerical discrepancy of a sorted point set
S on a line, and find an interval that maximizes the numerical discrepancy, in linear time
and space.

Proof: Algorithm 1, suitably modified, finds the interval that maximizes D;. Its correctness
follows from lemmata 10 and 11. The running time of the first step is @(n) since there are
O(n) intervals of constant size each. Each merge operation takes O(1) time, and, since we
halve the number of intervals in each iteration, there are a total of @(n) merges. Similarly
we can maximize D, and compute the maximum numerical discrepancy. O

3.2 The dynamic 1-D case

The dynamic case is quite more difficult because when we insert or delete a point the
cardinality of S (n) changes. As a consequence, the function D; changes and we have to
compute new maxima for every region. The following example shows that the insertion of
a new point in a region does change the maximal points of other regions.

Let S = {0.1,0.24, 0.4,0.6, 0.7, 0.8}, and assume we have two regions, A = [0,0.5],
and B = [0.5,1]. We can see that A, = [0.1,0.4], with D;([0.1,0,4]) =3/6 — 0.3 =0.2
and D;([0.1,0.24]) = 2/6 — 0.14 = 0.193.

But if we insert a point 0.9 in Ry, we have: Dy([0.1,0.4]) = 3/7 — 0.3 = 0.129 and
Dy([0.1,0.24]) = 2/7 — 0.14 = 0.146 Now A,,., is [0.1,0.24] (Fig. 5).

| |

0 1
01 0.24 0.4 06 07 08 09

| B a | | | | | |

Figure 5: The insertion of a point can change many maximal points.

An approach based on separate regions is still valuable however. When a point is
inserted (deleted) only one region is directly affected. For the rest of the section we will
assume that n is the maximum cardinality of S, for the entire sequence of updates.

First the interval [0, 1] is divided in r regions, each containing O(n/r) points. We do
not allow points of S to become endpoints of regions.

19

Consider such an interval A = [a;, a,], and assume that the points that lie inside A are
Trminy -+ - Tmaz. Recall (§ 2.2) that A,., is the subinterval that maximizes Dy, Aes: is the
subinterval that maximizes D; and shares A’s left endpoint, and A,y is the subinterval
that maximizes D; and shares A’s right endpoint. In order to compute A4z, Al and
A,ighy dynamically, we use the techniques of the following theorem by Dobkin and Eppstein.

Theorem ([DE]): We can insert or delete points from a set S C [0,1], and recompute
the halfspace discrepancy after each update, in time O(log® n) per update, and O(n logn)
space.

This algorithm allows us to dynamically compute A5, and A, 4, and we briefly out-
line the technique here. To compute Aj.; we have to find the point z; that maximizes
Di([€min, xi]) = (1 — min 4+ 1)/n — (z; — ;) over all points in A. This function is a linear
function of (z;,7). So we construct the convex hull of the O(n/r) points {(z;,¢)|z; € A},
and then we do a binary search on the convex hull to find the point that maximizes
(¢ —min + 1)/n — (z; — a;). If we use a dynamic algorithm to keep the convex hull struc-
ture, such as the Overmars and van Leeuwen algorithm ([OvL]) which requires O(log*(n/r))
time per update, we can then insert or delete points and find the new maximum of the
function (i —min +1)/n — (2; — a;) in O(log?(n/r)) plus O(log(n/r)) time for the update
and the binary search respectively. The computation of A,;;; is symmetrical, here we find
the point z; that maximizes (maz —j + 1)/n — (a, — z;).

The computation of A,,.. is a little more complicated. The endpoints of A,,,, must
be points in S, so in fact we want to find that pair of points that maximizes the function
Di([zi,2;]) =(j —14+ 1)/n — (; — x;), over all pairs of points in A.

An alternative way is to view (j — ¢ + 1)/n — (z; — x;) as a linear function of the
two-dimensional points (/(z,7),q(2,7)), with (z,7) = (z; — x;), and ¢(z,7) = (j — ¢ + 1).
In other words, the first coordinate is the length of the interval [z;,z;], and the second
coordinate, the difference of the ranks, is the the number of points of S that lie in the
same interval. To compute A,,,, we construct the convex hull of the O((n/r)?*) points
{(1(2,7),9(2,7)) | z; € A,z; € A,2; < z;}, and perform a binary search to find the point
that maximizes the function (j —:+1)/n — (z; — ;). The query time is then O(log(n/r)).

So for each region A, we keep two convex hull structures using O((n/r)?log(n/r)) space.
From these we extract four points of S that define A4z, Aiesr and Avigni. Let 1" be the
set that includes exactly these four points from each region. So 7' contains 4n/r points,
which change with each update. The following lemma shows that we can find the new 7'

in O(rlog(n/r) + (n/r)*log*(n/r)) time.

Lemma 12: The set T can be recomputed in O(rlog(n/r) + (n/r)?log’(n/r)) time after
each update.

Proof: With an update only one region is directly affected. The convex hulls are main-

20

tained using a dynamic algorithm ([OvL]) that requires O(log®(n/r)) time per update. For
an insertion of a new point z; of S in the region A, we have to make a total of O(n/r) in-
sertions to the convex hull structures because for each x; in A, a new point (|z; — x|, |t —k|)
is defined. In addition to that, the second coordinate of up to (n/r)? convex hull points
may change, because the insertion of a new point changes the rank of up to (n/r) points.
The cost for the structure update is then O((n/r)? log*(n/r)).

Now we can find T' doing three binary searches for each region with a total cost of

O(rlog(n/r) + (n/r)? log2(n/r)). O

The following lemma shows that we can find the interval that maximizes D; from 1.

Figure 6: The maximum interval I intersects regions A and B, and contains C'.

Lemma 13: An interval in [0, 1] that maximizes D; must have as endpoints points of 7.

Proof: If this maximum interval [lies in one region, then its endpoints are in T'. So
suppose its left and right endpoint are in regions A and B respectively (Fig. 6).

Let AB = AU C U B be the region that starts at a and stops at b (C = AB\ A\ B).
Then [= (INA)UCUUNB), and Di(L) = Di(I NA)+Di(C)+Di({ N B). Lemma
11 shows that D;(I N A) is maximized when (I N A) = Arigne and similarly, D;(1 N B) is
maximized when (/ N B) = Bj.s;. By the construction of 7', in includes the endpoints of
Arigny and By.g, and the lemma follows. O

So we can then use the algorithm for the static case and find the maximum in O(|T|) =
O(r) time.

Theorem 6: We can insert or delete points from a point set S on a line, and recompute the
maximum numerical discrepancy after each update, and find an interval that maximizes
the numerical discrepancy, in time O(n??log?n) per update, and space O(n*/3logn).

Proof : We can compute T in O(r log (n/r)) + O(n? log® (n/r) /r?) time (from lemma 12)

after each update. Once the new maxima are found, we can use the linear time algorithm

21

for sorted inputs, and find the updated maximum of D; for S in an additional O(r) time.
The same procedure is applied to D;. we find the maximum numerical discrepancy from
the maximum of the two maxima. If r = n??, the total update cost is O(n2/3 log? n).

This cost does not include the time required to split a region if after an insertion it
/3 points, or to combine two consecutive regions to one if, after an
insertion they both contain less than n'/® points. Each such operation costs O(n2/3 log? n)
because it requires complete rebuilt of the convex hull data structures. So the maintenance
of the regions does not raise the asymptotic complexity of an update.

contains more that 2n

The space requirement for each region is O((n/r)?log(n/r)) = O(n*3logn), so the
space used is O(n*/?logn). O

Finally we note that the dynamic algorithm also works when the weight of each point
is not uniformly 1 but is assigned by a weight function of the foorm R : S — R,. For
this we have to change the index of every point. For the i-th point, instead of using i as
its index, we use the sum of its weight and the weights of the + — 1 points on its left.

3.3. The 2-D case

In two dimensions the input set S is a set of n points in the unit square [0,1]%. We
assume that the points are distinct and no pair of them has the same y coordinate. This
assumption makes the derivation easier but is not essential for the proof of correctness
and the running time analysis of the algorithm. As in §3.2, we give some definitions first.
The function In : R — N gives the number of points inside a rectangle, and the function
Area : R — R, gives the area of a rectangle. The numerical discrepancy D of a rectangle
R €0,1]? is given by D(R) = |Area(R) — In(R)/n|. The objective is to find the rectangle
that maximizes D.

Since the definition of D is somewhat awkward, we also define the following two functions

D;(I) = Area(R) — In(R)/n and D,(I) = In(R)/n — Area(R).

The maximum of D has to maximize at least one of D, and D;. In this section we give
an algorithm that finds the rectangle in R, that maximizes D,, but the same approach can
also find the maximum of D;.

Our approach to the problem is based to the algorithm we developed for the bichromatic
discrepancy. Again it is clear that only O(n*) rectangles have to be considered, as the
following lemma shows.

Lemma 14 Let]maa: - {(xmzna ymzn)a (xmaza ymzn)7 (xmaa:a ymax)a (xmina ymar)}a be the
rectangle that maximizes D,. Then each edge must either pass through a point of S.

22

Proof: Suppose that that is not the case for an edge e. We can then freely move e along
the axis perpendicular to it without changing the number of points that are inside /..
One direction of movement increases the area of the rectangle, and the other decreases it,
so a movement on the second direction results in a rectangle I” with D,(I") > Dy(Lpaz)-
Furthermore, the direction that decreases the area cannot be blocked even if e lies on the
boundary of the unit square. O

A sweeping technique to search through all O(n?) possible different y coordinates for
the best rectangle is again the technique of choice. The following lemma shows that the
technique we used in §2.4 follows through.

Lemma 15: The problem of finding the rectangle that maximizes D, among all the
rectangles with given y coordinates is equivalent to the problem of finding the interval
that maximizes D; for a set of one-dimensional points.

Proof: Assume that the fixed y-coordinates are y;,y;, with ¥, < y;. We want to find the
rectangle I = {(z;,ys), (z;,u5), (z;,y:), (zi,y¢)} that maximizes D, for all 7,j,(z; < ;).
By the definition D,(I) = In(I)/n — Area(I), and Area(l) — (z; — x;)(y: — y»). Since

(y: — y») = Ay is a positive constant, we can equivalently maximize the function
D,(I) = In(I)/(nAy) — (z; — ;)

We also know that In(l) = {(xk,yx) | zx € [2;,2;] and yr € [yp, y¢]}, which shows that
to find the maximum rectangle with y coordinates y, and y; we have to consider only the
points with y coordinates between y, and ;.

Again we take the set Sy, .1 = {zx | (zg,yx) € S and y; € [y, y,]}. From the construc-
tion of Sy, 4, follows that Count([z;, x;]) = In({(x:, ys), (z;,), (x;,¥¢), (i, y:)}). Recall
that the definition of Dy is Dy([x;, z;]) = Count([z;, z;])/|Spys.m| — (27 — 2:) (§3.1). We can
however modify the algorithm we gave in §3.1 to use the constant nAy instead of Sy, ,./-
The modified algorithm maximizes the function Dy, ,,([z1, z,]) = Count([z;, z,])/(nAy) —
(z,, — 1) . Lets assume that the maximum interval is [z, z,]. From it we get the rectangle
L = {(z1,0), (xr,00), (21, y2), (1, 41)} , which maximizes D/ and consequently D,. O

Lemma 15 shows that we can easily compute the maximum rectangle when the y coordi-
nates are fixed by a pair of points. However the performance of the dynamic one dimensional
algorithm does not allow for a fast two dimensional algorithm. The two following lemmata
provide an additional idea that leads to a faster algorithm.

Lemma 16: Assume that for two given points of S, (x5, y3) and (z4,y;) (with 0 <y, <y, <

1), the rectangle I maximizes D, over all the rectangles with these y coordinates. Then for
I to maximize D, over all rectangles, it has to include the point (xs, ys).

23

Proof: From the initial assumption no two points in S have the same y coordinate. If
(3, y5) & I, then the lower horizontal edge of I does not pass through a point, and, from
lemma 14, [can’t maximize D,. O

It follows from lemma 16 that we don’t have to find the best rectangle for every pair of
points. Instead, for each pair, we find the best rectangle that contains the lower point of
the pair. For a given pair of points, the latter maximum can be smaller than the former,
but the maximum rectangle overall has to include both points of the pair.

The following lemma shows that this problem is equivalent to a simpler one dimensional
problem.

Lemma 17: Suppose that we are given a pair of points that define the y coordinates,
and we want to find the rectangle with these y coordinates that maximizes D, and passes
from the lower point. This problem is equivalent to the problem of finding the halfspace
discrepancy for two sets of one dimensional points.

Figure 7.b: The two equivalent one-dimensional problems.

Proof: ~ Assume that the given points are (z3,y5) and (x4, y;), with y, < y;. We want
to find the rectangle I, = {(@i,y), (z;,y:), (2, u8), (2i,y5)} with z; > x, > z;, that

24

maximizes D, (Fig. 7). Following the proof of lemma 15, we take the set S, . =
{zx | (zr,yx) € S and yr € [ys,y:]}. We also know that we can equivalently maximize
the function Count([z;, z;])/(nAy) — (z; — x;), for all x; < ay < ;.

We divide [0, 1] in three regions, [0,r1],[r1, 2], [r2, 1] so that r < xp < rq, and, for all
x; € Sy, cither z; < ryorx; > ry. In other words, only z; is in the region [rq,r;].
This partitioning divides Sy, ,,) into three disjoint sets, the points on the left of z; (i.e.
(Shype N [0,71])), {xp}, and the points on the right (i.e. (Sp,.,) N [r2,1])). We sort
the two sets, and rename the points according to their rank after the sorting: Sy, 4,10 =

{z1,..., Z‘S’[ybyyt]n[gyr‘l”} and Sty pr = {21, - ,Z‘S[ybyyt]n[rgyl]‘}.

Suppose that the maximum interval is [z, z,]. Since it must contain x;, it can have
at most one endpoint in each of [0,r] and [ry, 1]. From lemma 14 it follows that both z;
and z, must be points of S}, ,,j. So z; is either in Sy, 4,1, or is equal to x;. Assume that
the first is true. If we apply lemma 10, we see that [r2,z,] has to maximize the function
Count([ry, z;])/(nAy)—(z;—r32), for all [ry, z;], x; € (S, N[r2, 1]). Equivalently, it must
maximize the function i/(nAy) — (z; — r2), for all z; € Sy, 4.1,
the two dimensional points {(z;,7) | 2z; € S}, 4,],-}- The maximum of this function can be
computed with the technique of [DE] that we gave in § 3.2. The only modification is that
we maximize for a different linear function.

This is a linear function of

This gives us the only two points in Sy, ,, that can form the right endpoint of the
maximum interval. Similarly we can find the two possible choices for the left endpoint, and
from them we find the maximum interval in constant time. O

The following algorithm finds the rectangle that maximizes D, for the input set S C
[0, 1]%. The algorithm uses a modified version of the dynamic linear half-space discrepancy
algorithm given in [DE] as a subroutine (Fig. 8).

Algorithm 3:

1. Compute Y,.,..¢ and sort it.

2. For each element y; of Y.0rq do:

(a) Find the set S; = {(z;,y;) | (z;,y;) € S and y; < y;} and sort it on the y’s.

(b) Partition [0, 1] in three regions so that the middle one contains only z; among
all the points of S;.

(c) While S; is not empty, do:

i. Remove from S; the point (x;,y;) with the smallest y coordinate, and insert
z; into the appropriate (left or right) region.

25

ii. Use the modified linear algorithm to find the rectangle that maximizes D,
over all rectangles that have y coordinates between y; and y;, and include
the point (i, y;).

iii. If the new value is larger than the largest seen so far, record the rectangle.

3. Return the best rectangle found.

d € f
Figure 8: The 2-D algorithm.

a: The input point set.

b: A pair of points is chosen.

¢: The 1-D problem is shown.

d: The maxima are computed from the convex hulls of the lifted points.

e: The best rectangles (that include the lower point and have these y coordinates) are shown.

f: The rectangle that maximizes the numerical discrepancy for this point set.

26

Theorem 7: We can compute the maximum numerical discrepancy of a point set S C [0, 1]2
with n points, and find an axis aligned rectangle that maximizes the numerical discrepancy,
in O(n? log® n) time and O(n log n) space.

Proof: The correctness of the algorithm follows from lemmata 15, 16 and 17. The algorithm
considers all pairs of points. For each one it finds the rectangle that maximizes D, while it
contains the lower point. In the inner loop of the algorithm we use the modified dynamic
algorithm of [DE] for the left and the right region separately. We find the maximum of D;
in a similar way, and from there the discrepancy maximum.

For the running time, we analyze each step. Step 1 takes O(nlogn) time and then step
2 is executed O(n) times. Step 2.a also takes O(nlogn) time, and step 2.b takes linear
time. The inner loop, step 2.c, is executed O(|S;|) = O(n) times. We are only doing
insertions to the convex hull, and we can maintain the convex hulls at a cost of O(log?n)
time per insertion ([OvL]). Consequently, the dynamic linear algorithm takes O(log?n)
time for insertions and O(log?n) time for queries. In step 2.c.ii we do one insertion and
two queries, so this step takes O(log2 n) time. Steps 2.c.i and 2.c.iii are executed in constant
time. Finally, step 3 also takes constant time.

The total time is O(n%log®n). At each point we have to maintain the data structure for
two dynamic convex hulls and two sorted arrays of linear size. The used space is therefore
O(nlogn). O

So far we implicitly assumed that each point has weight 1, Algorithm 3 can also be
used for points with arbitrary non-negative weights. Since all discrepancy computations
are being done in the subroutine that calls the one-dimensional algorithm, only this part

has to be modified.

4. Extensions

In this chapter we give an approximate 2-D algorithm for computing the maximum
bichromatic discrepancy and the maximum numerical discrepancy for axis oriented rect-
angles. We also examine different sets of geometric regions, in particular halfspaces and
unions of disjoint rectangles.

4.1 An approximation algorithm

[t is in many cases desirable (especially when the input sets are very large) to trade off
some of the quality of the solutions to reduce the computation time. As we have already

27

seen in the introduction, it is sufficient to find hypotheses with almost optimal empirical
error. Approximate algorithms are also useful from the point of view of applied machine
learning.

In this section we develop algorithms that find an approximate solutions to the two-
dimensional problem. The basic idea is to divide the unit square in a number of rectangles,
replace the points in each rectangle with a single point of the appropriate weight, and use
the algorithms of sections 2 and 3 to compute the maximum discrepancy of the new, smaller
point set S and the new weight function w: S — R.

Let’s consider first the bichromatic discrepancy. For given S, y and approximation
factor 1/r, the first step is the partitioning of the unit square in O(r?) regions. We partition
the unit square recursively, by dividing each existing rectangle with more than O(n/r?)
points into two rectangles so that each contains at most 1/2 4+ n/r? of the points. We
divide along the = and the y axis alternatively. If we cannot do that for some rectangle,
then at least n/r? of the points of this rectangle have to have the same z or the same y
coordinate. In this case we create a 0-width rectangle, and we subdivide it along its length
so that each resulting 0-width rectangle has ©(n/r?) rectangles.

Lemma 18: This process is completed in O(n log), and in the end we have ©(r?) rectangles,
each having ©(n/r?) points.

Proof: ~The running time comes from the fact that first we have to sort the points by
z and y coordinates. Since after each split the number of points in each rectangle is
approximately half, in 2logr iterations each rectangle has at most n/221°8" 4+ (n/r?)(1 +
1/2 4+ ...+ 1/22%7=1) — O(n/r?) points. Finally, since we stop subdividing a rectangle
when it has ©(n/r?) points, we end up with ©(r?) rectangles. O

The next step, after the partition of the unit square, is the reduction of the size of the
input set from n to O(r?). For each rectangle R, we compute the weight of the points that
lie in it w(R) = ¥ ,esnr) X(2), and replace all the points with a point on the lower left
corner of the rectangle that has weight w(R). If a point of S lies on a boundary between
two rectangles, we assign it to only one rectangle, ensuring that the sum of all the weights
is equal to)" ,cs x (). This step also takes O(n logr) time.

Lemma 19: After the partition of the unit square into rectangles that contain ©(n/r?)
points, a line segment parallel to one of the axes can intersect ©(r) rectangles.

Proof: Assume the line is horizontal, the vertical case is symmetrical. From the construc-
tion of the partition, the number of non 0-width rectangles that interset a fixed horizontal
line doubles every second iteration, so that line intersects @(2'°¢ ") = O(r) of the initial
rectangles. For each one, it might intersect at most one vertical 0-width rectangle. A
horizontal line segment can contain many horizontal 0-width rectangles, but can intersect
at most two, one with each endpoint. O

28

Theorem 8: Given a point set S, and a coloring x, we can compute in O(nlogn + r* logr)
time an approximation of the maximum bichromatic discrepancy within O(n/r) of the
optimal.

Proof: We apply Algorithm 2, suitably modified to work with the arbitrary weights, to the
set S,. Let’s assume that the rectangle [,,, maximized A for S and y. From the construction
of S,, each edge of [, can intersect at most ©(r) rectangles. Let S, N [, be the set of
points in S, that are inside [,,, and take I’ to be the minimum rectangle that contains all
of them. The difference between 3, ¢(snr,.) X(2) and Y ¢(s,nr) w() is at most the weight
of the rectangles intersected by I,,. There are O(r) of them, and each has weight ©(r/r?),
so Ag, (") differs at most ©(n/r) from Ag, (I,). Similarly, if the rectangle I/, maximizes
the discrepancy for S, and w, there exists a rectangle I with Ag, (/) that differs at most
O(n/r) from Ag, ,,(I]). Therefore, |[MazA'(S,x,R) — MazA'(S,,w,R)| = O(n/r). O

When we consider the numerical discrepancy, we realize that we have to add another
step in the construction of the set S, to account for the area of the rectangles. After we do
the subdivision, we have O(r?) rectangles, and the weight of each is at most O(n/r?). If
the area of any of these rectangles is larger than 4r 2, we divide it in half along its shortest
edge, and continue to do so until the area of all rectangles is at most 4r 2.

The whole operation is performed in O(n logn) time, and, as the following lemma
shows, we end up with O(r?) rectangles.

Lemma 20: After this process, the number of the rectangles that partition the unit square

is O(r?).

Proof: The number of the initial rectangles is ©(r?). Every rectangle that is produced by
the breaking up of a large initial one has an area of at least 72, and therefore there are at
most r? additional rectangles produced. O

Lemma 21: The discrepancy of each one of these rectangles is O(r~?).

Proof: The discrepancy of any such rectangle R is |Area(R) — In(R)/n|. But we have
that 0 < Area(R) < 2r=? for every rectangle. We also have that 0 < In(R) < n/r? =
0 < In(R)/n < r~% It follows that |Area(R) — In(R)/n| < 2r=2. O

After the subdivision, we can reduce the size of the input set from n to O(r?). For each
rectangle R, we find the number of points In(R) that lie inside it, and replace them with
a point on the lower left corner of the rectangle that has weight In(R) (Fig. 9). Again we
have to make sure to count each point only once, so that the sum of all the weights is n.
This step takes O(n logr) time.

29

The final step is the application of the two-dimensional algorithm on the new point set.
As we noted in the previous sections, the algorithm can be modified to run for weighted
points without affecting its asymptotic performance, so this step takes O(r? log? r) time.

Lemma 22: After the partition of the unit square into rectangles with area O(r=%) and
containing ©(n/r?) points, a line parallel to one of the axis can intersect ©(r) rectangles.

Proof: Assume the line is horizontal, the vertical case is symmetrical. From the construc-
tion of the partition, the number of rectangles that interset a fixed horizontal line doubles
every second iteration, so that line intersects ©(2!°67) = ©(r) of the initial rectangles.
Some of these are replaced by a number of smaller rectangles, which are now intersected
by the horizontal line. There are two kinds of these rectangles, depending on when their
intersected edges were created.

The rectangles that have their two intersected edges belong to the same initial rectangle
cannot be more than ©(r), because each one takes the place of one initial rectangle.

There are also the rectangles that at least one of their intersected edges was created
during the partitioning of the large initial rectangles. But such edges divide the largest
dimension of the initial rectangles, so each of these rectangles is at least v/2/2r wide, and
there cannot be more than /2 r of them that intersect the horizontal line.

The total number of intersected rectangles is then between r and (1 + \/5) r. O

1
n | |
n n
| |
[S—
| |
n | |
| |
| |
. © -
| | " | | u
® ® -
0 1

Figure 9: A sample input set (square points), the subdivision of the unit square into rectangles
with bounded numerical discrepancy (here r = 2), and the input to the approximation algorithm
(round points, the darker points have higher weight).

Theorem 9: Given a point set S C [0,1]%, we can compute in O(nlogn + r* logr) time
an approximation of the maximum numerical discrepancy within O(1/r) of the optimal.

30

Proof: From the discussion above and the proof of Theorem 8. O

We note here that both of these algorithms can be easily modified to work for point
sets with arbitrary weights (for the bichromatic discrepancy) or arbitrary positive weights
(for the numerical discrepancy).

4.2 Higher Dimensions

Both Algorithm 2 and Algorithm 3 can be easily extended to handle d dimensions. The
running times are O(n?¥"%logn) for the bichromatic discrepancy and O(n??~?log®n) for
the numerical discrepancy) and the space requirement is linear.

The main idea of the extension is to project the d dimensional points to 2 dimensions.
Clearly the box with the maximum (numerical or bichromatic) discrepancy must have a
point on each hyperplane of its boundary. So the algorithm examines every possible pair
of points as a pair of boundaries in every one of the first d — 2 dimensions. For each of the
O(n?9=?)) combinations of boundaries, it projects all points that are inside the boundaries
to the remaining 2 dimensions, and applies the two-dimensional algorithm to the set of the
projections.

4.3 Union of two rectangles

Here we consider a natural extension to the set of axis-aligned rectangles, the set of
unions of two disjoint axis aligned-rectangles R,.

Theorem 10: We can compute the range in R, that maximizes the bichromatic discrepancy
of a given point set S with an arbitrary given coloring x in O(n?logn) time. We can also
compute the range in R, that maximizes the numerical discrepancy of a given point set S
in O(n?log*n) time.

Proof: Let us consider the case for the bichromatic discrepancy first, the other case is
similar. The two rectangles of the optimum range are axis-aligned and disjoint, therefore
they are separated by either a horizontal or a vertical line. Consider the case of the
horizontal line. There are n possible cases for such a line, the y coordinates of the input
points. For each such line we compute the optimum rectangle above it and the optimum
rectangle below it. We can find the best rectangle for all n lines with one run of Algorithm
2. Each time we find a new optimum rectangle we record it in the line that passes right
through the top of the rectangle. After we have found the optimum rectangle that touches
each line, we can find in linear time the optimum rectangle that touches or lies below the

31

line. Similarly we find the optimum rectangle that lies above each line. Then we form the
n pairs and find the optimum one. The case for vertical lines is the same, but we have to
modify the algorithm to perform a horizontal sweep. O

4.4 Halfspaces

[DE] looked at the problem of computing the maximum numerical discrepancy for the
set of halfspaces. They gave an algorithm that finds the hyperplane that maximizes the
numerical discrepancy of a point set S € [0,1]? (|S| = n) in O(n?) time. We note here that
this algorithm can be easily modified to solve the corresponding minimizing disagreement
problem for hyperplane hypotheses in the same time bound.

®
° °
¢ o ¢
¢ °
(@ o . A—
a b

Figure 10: Sampling sets with small maximum numerical discrepancy. The rectangles shown
maximize the numerical discrepancy.

a: Euclidian area. b: Weighted area (§4.5).

4.5 Weighted area functions

Algorithm 3 can be used to find sampling patterns that approximate different measures
rather than the Euclidean area. Such point sets can be useful in many cases. For example,
we may know that some parts of an image have more details and so we can sample these
parts at a higher rate. Also, point sets with more weight in the middle can be used for low

32

pass filtering. In a particular case that we examined (Fig. 10.b), the area of a rectangle
was given by the function

W Area(A) = / sinc(z — 0.5)sinc(y — 0.5)dzdy
A

(where sinc(z) = sin(z)/x).

5. Conclusions and Problems

In this paper we examine two closely related algorithmic problems that arise in different
areas of computer science.

The algorithms we present for computing the maximum discrepancy have direct appli-
cations in machine learning and computer graphics, and their near quadratic running time
allows them to be useful with the large data sets common in many real-life problems. We
also implemented a simple version of the two-dimensional algorithm to compute the maxi-
mum numerical discrepancy, and used it to find sampling patterns with very low rectangle
numerical discrepancy for ray tracing (Fig. 8, Fig. 10.a). We use a probabilistic proce-
dure that starts with a good pattern of low maximum discrepancy (e.g. Zaremba points)
and randomly picks and replaces points so that the maximum numerical discrepancy de-
creases. This implementation provided the basis for visualization of the way the algorithm
works ([DG]). For this purpose we used GASP ([DT]), a system for scientific visualization.
Figures 8 and 10 are produced from our visualization.

Finally we present a number of interesting open questions related to discrepancy.

1. What is the lower bound for an algorithm that computes the maximum bichromatic
or numerical discrepancy for axis aligned rectangles in the d-dimensional case (for
d > 1)? We conjecture that ©(n?) is a lower bound for both problems in the 2-D
case.

2. A related problem is that of finding a fast dynamic algorithm for the d-dimensional
case (d > 1). There is none known so far that asymptotically improves on the simple
approach that just uses the static algorithm after each update.

3. Extend these algorithms to arbitrarily oriented boxes and different families of regions.
One problem here is that the search space we have to explore increases with the
complexity of the regions. For example there are O(n®) possible solutions when we
consider rectangles with arbitrary orientation. A fuller treatment on this subject will
appear in [Gu].

33

4.

There is also the problem of finding better approximation algorithms for both the
static and the dynamic cases.

. Finally, there are problems in different areas that can be recast as variants of discrep-

ancy problems. For example, an algorithm by Goldberg ([Go]) that orients polygonal
parts has to solve the following problem. Given a set of linear points in the unit
interval, and a number £, find the smallest interval that includes & points. This is a
disguised discrepancy problem, because a different way to state it is, find the intervals
of minimum discrepancy that contain a given number of points. Advanced algorithms
and related data structures developed in discrepancy theory could offer solutions for
this and similar problems.

A cknowledgement

The authors would like to thank Bernard Chazelle and David Haussler for helpful com-
munications regarding the research for this paper, and two anonymous referees for their
suggestions.

References

[AL]

[BC]

D. Angluin and P. Laird, Learning from noisy examples. Machine Learning, 2
(1988), 343-370.

J. Beck and W.W.L. Chen, Irregularities of distribution. Cambridge University Press
(1987).

[BCM] H. Bronnimann, B. Chazelle and J. Matousek, Product range spaces, sensitive sam-

[BN]

[C]

pling, and derandomization. Proc. 34th Ann. IEEE Symp. Foundat. of Comp. Sci.
(1993), 143-155.

W. Buntine and T. Niblett, A further comparison of splitting rules for decision-tree
induction. Machine Learning, 8 (1992), 75-82.

B. Chazelle, Geometric Discrepancy Revisited. 34th Symposium on Foundations of
Computer Science (1993).

34

[dB]

[DE]

[DG]

[DM]

[DT]

[Go]

[Hal]

[Hau]

[HW]

[HSV]

[HU]

[Ka]
[Ke]

[KL]

M. deBerg, Computing Half-Plane and Strip Discrepancy of Planar Point Sets. To
appear (1993).

D. Dobkin and D. Eppstein, Computing the Discrepancy. Proceedings of the ninth
annual Symposium on Computational Geometry (1993), 47-52.

D. Dobkin and D. Gunopulos, Computing the rectangle discrepancy. 3rd Annual
Video Review of Computational Geometry (1994) 385-386.

D. Dobkin, and D. Mitchell, Random-FEdge Discrepancy of Supersampling Patterns.
Graphics Interface 93 (1993).

D. Dobkin and A. Tal, GASP A System to Facilitate Animating Geometric Algo-
rithms. Third Annual Video Review of Computational Geometry, (1994), 388-389.

K.Y. Goldberg, Orienting Polygonal Parts Without Sensors. Algorithmica 10,
(1993) 201-226.

D. Gunopulos, Ph.D. Thesis, Princeton University, Department of Computer Sci-
ence, to appear.

J.H. Halton, A retrospective and prospective survey of the Monte Carlo method.
SIAM Review 12 (1970), 1.

D. Haussler, Decision theoretic generations of the PAC-model for neural nets and

other applications. Inf. and Comp. 100 (1992), 78-150.

D. Haussler and E. Weltz, e-nets and simplex range queries. Disc. Comput. Geom.
2 (1987), 127-151.

K.U. Hoeffgen, H.U. Simon and K.S.Van Horn, Robust Trainability of single neu-
rons. Preprint (1993).

R.C. Holte, Very simple classification rules perform well on most commonly used

datasets. Machine Learning, 11 (1993), 63-91.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979).

J.T. Kajiya, The Rendering Equation. Computer Graphics, 20 (1986) 143-150.

M. Kearns, Efficient noise-tolerant learning from statistical queries. Proc. of the
25th ACM Symp. on the Theory of Computing (1993), 392-401.

M. Kearns and M. Li, Learning in the presence of malicious errors. SIAM J. Comp.

22 (1993), 807-837.

35

[KS]

[KSS)

[Ko]

L]

[Mal

M. Kearns and R.E. Schapire, Efficient distribution-free learning of probabilistic
concepts. Proc. of the 31st Annual IEEE Symp. on Foundations of Computer Science
(1990), 382-391.

M. Kearns, R.E. Schapire and L.M. Sellie, Toward efficient agnostic learning. Proc.
of the 5th ACM Workshop on Computational Learning Theory (1992) 341-352.

J.F. Koksma, Fen algemeena stelling uit de theorie der geligkmtige verdeeling modulo
1. Mathematica B (Zutphen) 11 (1942/43) 7-11.

D. Lubinsky, Bivariate splits and consistent split criteria in dichotomous classifica-
tion trees. Ph.D. Thesis, 1994, Rutgers University.

W. Maass, Efficient Agnostic PAC-Learning with Simple Hypotheses. Proc. of the
7th Annual ACM Conference on Computational Learning Theory (1994), 67-75.

IMWW] J. Matousek, E. Welzl and L. Wernish, Discrepancy and e-approzimations for

[Me]

[Mit]

[Min]

IN78]

[N92]

[OvL]

[Pa]

[P]

[PS]

bounded VC-dimension. Proc. of the 25th ACM Symp. on the Theory of Computing
(1993), 424-430.

K. Mehlhorn, Multi-Dimensional Searching and Computational Geometry, Springer
1984.

D. Mitchell, Ph.D. Thesis, Princeton University, Department of Computer Science,
to appear.

J. Mingers, An empirical comparison of pruning methods for decision tree induction.
Machine Learning, 4 (1989), 227-243.

H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers. Bulletin

of the American Mathematical Society, 84 (1978), 6, 957-1041.

H. Niederreiter, Quasirandom sampling computer graphics. Proc. 3rd Internat. Sem-
inar on Digital Image Processing in Medicine, Riga, Latvia (1992), 29-33.

M. Overmars and J. van Leeuwen, Maintenance of configurations in the plane. J.
Comput. Sys. Sci. 23 (1981) 166-204.

S. Paskov, Computing High Dimensional Integrals with Applications to Finance.
Tech. Rep. CUCS-023-94, Columbia University.

F. Preparata, An optimal real time algorithm for planar convezx hulls. Comm. ACM

22 (1979).

F. Preparata and M.I. Shamos, Computational Geometry, Springer (1985).

36

[S] P. Shirley, Discrepancy as a quality measure for sample distributions. Proceedings

of Eurographics "91, 183-193.

[T] M. Talagrand, Sharper bounds for empirical processes. To appear in Annals of
Probability and its Applications.

[TW] J.F. Traub and H. Wozniakowski, Recent progress in information-based complexity.
Bulletin of the EATCS 51 (Nov. 1993).

[V84] L.G. Valiant, A theory of the learnable. Comm. of the ACM 27 (1984), 1134-1142.

[V84] L.G. Valiant, Learning disjunctions of conjunctions. Proc. of the 9th Intern. Joint
Conf. on Art. Int. (1985), 560-566.

[VC] V.N. Vapnik and A.Ya. Chervonenkis, On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory Probab. Applic. 16 (1971), 264-280.

[(WGT] S.M. Weiss, R. Galen and P.V. Tadepalli, Mazimizing the predictive value of pro-
duction rules. Art. Int. 45 (1990), 47-71.

[WK90] S.M. Weiss and 1. Kapouleas, An empirical comparison of pattern recognition,
neural nets, and machine learning classification methods. Proc. of the 11th Int.
Joint Conf. on Art. Int. (1990), Morgan Kauffmann, 781-787.

[WKO91] S.M. Weiss and C.A. Kulikowski, Computer Systems that Learn (1991), Morgan

Kauffmann.

[(WW] G. Wasilkowski and H. Wozniakowski, Ezplicit Cost Bounds of Algorithms for Mul-
tivariate Tersor Product Problems. to appear in T. of Complexity, March 1995.

(W] H. Wozniakowski, Average Case Complexity of Multivariate Integration. Bulletin
Amer. Math. Soc. 24 (1991).

37

