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ABSTRACT
This paper addresses the problem of lossy compression of
arrangements. Given an arrangement of n lines in the plane,
we show how to construct another arrangement consisting of
many fewer lines. We give theoretical and empirical bounds
to demonstrate the tradeoffs between the size of the new
arrangement and the error from lossiness.

For the specific application of computing discrepancies
of point sets, we demonstrate that speedups by factors of
several hundred are possible while introducing small errors.
This research has been enabled by various visualization tech-
niques and is accompanied by a video.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

1. INTRODUCTION
The line arrangement is a fundamental data structure

for computational geometry problems. The list of appli-
cation areas where line arrangements are used includes mo-
tion planning [38, 20, 29], assembly planning [19, 21], aspect
graphs [17, 1], molecular modeling [22], hidden surface re-
moval and visibility computations [32, 35], largest empty
polygons [16, 11], ham sandwich cuts [15], and the compu-
tation of the discrepancy of point sets for sampling applica-
tions [10, 9, 5]. There has also been considerable interest in
finding properties of portions of a line arrangement [2, 7].

One of the difficulties that arises in using arrangements
to solve real problems is their complexity. Many geometric
algorithms have running times that are quadratic or cubic
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in the number of regions. For an arrangement, the input is
measured as a number n of lines or points. That gives rise
to an arrangement of n2 regions. This leads to algorithms of
running times potentially as high as O(n4) or O(n6). Such
running times are prohibitive in practice. In such cases,
applications developers take shortcuts to avoid this blow
up in complexity. Examples of these shortcuts include the
development of probabilistic algorithms for motion planning
[4, 28] and the limiting of motion planning algorithms to
“fat” objects [42]. We propose here a different alternative
to handling this problem. Rather than developing a faster
algorithm, we reduce the input size while maintaining a good
approximation to the original input.

Our approach is to use techniques of compression to re-
duce the size of a line arrangement. The underlying belief
is that a line arrangement defined by a large collection of
lines consists mainly of regions of small area. If the lines
were thicker (e.g. if the arrangement had been drawn with
a thick pen), these regions would have disappeared into ink
smudges. For many applications, what is most interesting
is not the smudges but rather approximations to the re-
gions that survived. We present an algorithm that reduces
the number of lines defining the arrangement by a constant
fraction. This makes the standard algorithms for computing
on arrangements run much faster. For example, consider a
situation where an algorithm of running time O(n6) will be
applied to an input of size n. Imagine that we reduce the
input size by a factor of 10. The result will be an algorithm
that runs 1,000,000 times faster. We show in this paper that
such improvements are possible.

As an example of our work, we consider the problem of
computing the discrepancy of a set of points [39, 10, 9, 5].
Previously, we showed a method to reduce the complexity of
this computation from O(n3) to O(n2). Building upon that
implementation, we now give an approximation scheme that
reduces the constant factor. Our empirical studies show that
for 5000 input points, we can get speedups by factors of 500
while introducing errors of less than 2.2%. The techniques
used to do this are precisely the techniques described for
reducing the complexity of arrangements.

Our ideas build on the use of duality in the representation
of an arrangement. We use the dual transform to map the
input lines to points in the dual space. Points in the dual
space are then matched to near neighbors. Near neighbor
point pairs are then replaced by a single point. This intro-
duces an error into the arrangement. We demonstrate that



such errors are bounded. Our theoretical analysis shows that
any arrangement of points in the unit square must have a
sufficient number of near neighbor pairs. Since points that
are close in dual space correspond to lines that are close in
the primal space, we are able to prove theoretical bounds
on the error introduced. We have also implemented our al-
gorithms to show that our proven error bounds are quite
conservative in practice.

We view the contributions of this paper to be two-fold. We
propose a solution to a problem in computational geometry
– that of doing efficient computation on the large structures
that arise when computing with arrangements. We also give
a general technique that we believe is very powerful and
will find application to other problems in computational ge-
ometry. We show the application of this technique to the
problem of computing the discrepancy and suggest other
problems where it is likely to be useful.

Visualization has played a central role in this research,
helping us to test conjectures, to develop ideas, and to visu-
alize the algorithm [41]. The accompanying video [12] was
developed along with the development of the paper.

In the next section, we give background. Section 3 de-
scribes our algorithm. In section 4, we derive theoretical
error bounds on our approach. Section 5 describes our im-
plementation and gives our empirical results. We conclude
with a discussion of other applications of our techniques.

2. BACKGROUND
We provide in this paper an algorithm to approximate

and so to compress arrangements in a lossy manner. In this
section we first define arrangements and then discuss some
compression schemes used in the geometric domain.

Arrangements
Arrangements [2, 7, 36, 18] are fundamental structures

of computational geometry. Given a finite set H of hyper-
planes in Rd, the arrangement A(H) is the decomposition
of Rd into connected open cells of dimensions 0, 1, · · · , d in-
duced by H. A d−dimensional cell in A(H) is a maximal
connected region of Rd not intersected by any hyperplane
in H. A k−dimensional cell in A(H), for 0 ≤ k ≤ d − 1, is
a maximal connected region in the intersection of a subset
of the hyperplanes in H that is not intersected by any other
hyperplane in H. Arrangements can also be defined on other
types of objects such as spheres and curved surfaces in Rd.

Specifically, in two dimensions, let L be a set of n lines in
the plane. The set L induces a subdivision of the plane that
consists of vertices, edges, and faces (0, 1 and 2-dimensional
cells, respectively). This subdivision is referred to as the
line arrangement induced by L and is denoted by A(L).

The complexity of an arrangement is the total number of
vertices, edges, and faces of the arrangement, θ(n2) in the
worst case.

The algorithm we propose in this paper works in dual
space. There are various known point–line duality trans-
forms. We use here three types of duality transforms.

polarduality[6] : L : ax+ by = 1⇔ p : (a, b)

Dual1 : L : y = ax− b⇔ p : (a, b)

Dual2 : L : ax+ by = 1⇔ p : (a/(a2 + b2), b/(a2 + b2))

The Dual2 transform has the feature that the line passes
through its dual point.

Compression in Geometry
Compression trades off space and time against error. Nu-

merous techniques have been developed for (lossy and loss-
less) compression of images [24, 34, 37, 40, 43]. These tech-
niques are aimed at reducing storage space and transmission
time. More recently, there has been a flurry of activity aimed
at the compression of geometric structures. This work ap-
plies to polyhedra and unstructured meshes. The goal is to
develop schemes that generate lossy or lossless representa-
tions of the topology and geometry of the structure. Two
approaches are popular here. The first is the compression of
the representation of the topology and the vertex geometry
of the meshes, as was done in [8, 3, 27, 26]. The second
avenue allows the modification of the topology of the given
mesh, through the use of a multi-resolution representation
[23, 31, 30, 14].

These compression schemes are evaluated by measuring
the tradeoff between the space reduction and the quality
of the image produced or the degree to which the reduced
mesh approximates the original. Often these measures are
aesthetic since there are no measures that can compute the
relative quality of different representations.

Our goals here are different. We seek compressed rep-
resentations of geometric structures that will behave sim-
ilarly to the original representations when used as inputs
to various algorithms. So, rather than reducing transmis-
sion speeds, we seek to reduce the running times of these
algorithms. We measure the quality of our scheme both aes-
thetically and empirically. In the former case, we argue that
our reduced arrangements “look” like the original arrange-
ments they are meant to approximate. In the latter case,
we measure the error that results from using our reduced
representations in place of the original inputs to algorithms
that compute on arrangements. We also give theoretical
arguments to derive conservative error bounds.

3. THE ALGORITHM
Given a collection L of n lines in a bounding box in the

plane, the algorithm returns a collection L′ of f(n) lines in
the same bounding box, such that the arrangement of the
f(n) lines of L′ is an approximation to the arrangement of
the n lines of L.

The main idea of the algorithm is to find a subset of the
collection of lines that can be approximated by a set of fewer
lines. Since the distance between a pair of points is a more
intuitive concept than the distance between a pair of lines,
we often shift to the dual space to present our ideas. We
show in the next section that this approach is justified. Us-
ing identifications made in the dual space, close lines in the
primal space can be grouped together. We show that close-
ness (between points) in dual space implies closeness (be-
tween lines) in primal space. In this way, the quality of the
matching of points assures the quality of the approximation
of arrangements.

Thus, given a set of lines, L, our algorithm proceeds as
follows:

1. Transform the set of lines L to the set P of their
dual points



2. Identify groups of points of P that lie close to-
gether

3. Replace each group of points by a smaller group
of approximating points

4. Transform the points of step 3 to a set of lines
L′ that approximates L

The results presented here were computed using a simpli-
fied version of this algorithm. In step 2, we computed a set
of k non-overlapping pairs of close points. where k is a user
specified parameter. Typically, we choose a small value of
k (even k = 1 works) and iterate between steps 2 and 3 to
allow us to create larger groups of points. For example, we
might identify points A and B in step 2 and replace them
by point X in step 3. On the next iteration, point X is
identified with point C and the pair is replaced by point Y .
As a result, we have replaced the group A,B,C of points by
the point Y .

Several strategies are available for choosing the replace-
ment point for a pair of points in step 3. The obvious thing
to do is to replace them by the midpoint of the segment
joining them. As seen in Figure 1 (where the original lines
are drawn in red and the line dual to the midpoint is drawn
in blue), the line dual to this midpoint may not be a natural
approximation. There are two problems with this scheme.
When two lines intersect they generate two pairs of wedges.
One is defined by an acute angle and one by an obtuse angle.
For our approximation we would like to choose the bisector
of the wedge defined by the acute angle. The midpoint,
however, may correspond to a line through the wrong pair
of wedges, as shown in Figure 1(a). Also, even when the
midpoint line is in the right pair of wedges, it has a slope
that is equal to the average of the other two slopes. When
one slope is small and the other large (see Figure 1(b)), this
line is very close to the line of large slope, and so does not
bisect the wedges as we would like.

To fix this, we do the computation in the primal space.
First, we find the lines dual to the points. Next, we find the
bisector of the wedge pair defined by the acute angle at the
intersection of these lines. The point dual to this bisector is
the replacement point for the two original points.

Our implementation of the algorithm iterates on this pro-
cess of finding good matches and replacing the matched lines
by their bisectors, building a coarser arrangement at each
stage. The algorithm iterates until a required level of com-
pression has been achieved or until there is no close pair
of lines to be matched. Both decision parameters can be
controlled by the user.

4. ERROR BOUNDS
We next prove that the above strategy works. As we

demonstrate in the empirical section of the paper, the er-
ror bounds given here are extremely conservative estimates
of the worst case. In practice, the results are significantly
better.

We begin by defining the distance measures we will be
using. For two points p and q in the plane, we define d(p, q),
the distance between them, as the Euclidean (i.e. L2) dis-
tance between them. We extend this to the definition of
Hausdorff distance ([25]) for point sets as follows:

Definition 1. Let Sn = {s1, ...sn} and Tm = {t1, ...tm}
be point sets of size n and m. d(Sn, Tm), the distance be-
tween these sets, is defined as the larger of
max1≤i≤n min1≤j≤m dL(si, tj) and
max1≤i≤m min1≤j≤n dL(ti, sj)

Our goal is to find a set Tm that approximates Sn where
m < n. As a first step, we show that there is a subset of S
consisting of pairs of points that lie close together.

In what follows, we will define RL as the axis-aligned
square rooted at the origin with opposite corner (L, L).

Lemma 4.1. Let Sn be a set of n points in RL. Then,
there are k disjoint pairs of the points of Sn such that the
points of each pair lie within distance D of each other where
D = L ∗

�
2/(n − 2k) (or k = n/2 − L2/D2).

Proof. Divide RL into l2 boxes each of side length L/l.
For each box that contains an odd number of points, discard
one of its points (at most l2 points are discarded). Now, all
of the remaining points can be paired at a distance of at
most L

√
2/l. If D = L

√
2/l then (n − l2)/2 pairs can be

created, so k = (n − l2)/2 = n/2 − L2/D2.

We can replace the pairs identified in this lemma by their
midpoints which gives the result:

Theorem 4.2. Given a set Sn of n points in RL and D >
0, we can always find a set Tm such that d(Sn, Tm) ≤ D
where m ≤ n/2 + L2/(4D2).

Proof. Using the lemma above we can always find k =
n/2−L2/(4D2) point pairs that lie within 2D of each other.
Each of these pairs is replaced by its midpoint – a point that
lies within D of the points of the pair. We then build the set
Tm as the union of the n − 2k points that are not matched
with these k midpoints. This yields a set of m = n − k =
n/2 + L2/(4D2) points and d(Sn, Tm) ≤ D.

This theorem applies to points. Next we show that close
for points in dual space implies close for lines in primal space.
This allows us to extend the theorem to lines. We begin by
defining a distance measure between lines. Because lines are
infinite, we must take care in defining this distance to keep
it finite and meaningful. We do so by defining distances
within RL.

Definition 2. If l1 and l2 are lines that intersect RL,
dL(l1, l2), the distance between l1 and l2 in RL is AL(l1, l2)/L2

where AL(l1, l2) is defined as follows:

1. If l1 and l2 do not intersect within RL, then AL(l1, l2)
is the area of the polygon defined by l1 and l2 within
RL.

2. If l1 and l2 are perpendicular lines that intersect within
RL, their intersection creates 2 pairs of wedges whose
areas can be computed. In this case, AL(l1, l2) is the
smaller of these areas.

3. If l1 and l2 are non-perpendicular lines that intersect
within RL, their intersection creates 2 pairs of wedges
with wedge angles of θ and π − θ where 0 < θ < π/2.
In this case, AL(l1, l2) is the sum of the areas of the
pair of wedges of wedge angle θ.



(a) line through the wrong pair of wedges (b) line close to the line of large slope

Figure 1: Midpoint replacement

We extend this in Hausdorff fashion to collections of lines
(i.e. arrangements) that intersect RL.

Definition 3. Let An be an arrangement of the n lines
{l1, ..., ln} and Bm be an arrangement of the m lines {s1, ..., sm}.
dL(An,Bm) the distance between An and Bm is defined as
the larger of max1≤i≤n min1≤j≤m dL(li, sj) and
max1≤i≤m min1≤j≤n dL(si, lj)

We now extend the previous theorem to lines.

Theorem 4.3. If p and q are points of RL with d(p, q) =
D then dL(Dual1(p), Dual1(q)) ≤ D

√
4 + L2/2L.

Proof. We represent p as (a, b) and q as (a + ε, b + δ)
where D =

√
ε2 + δ2. So, lp : ax−y = b and lq : (a+ε)x−y =

b+ δ are Dual1(p) and Dual1(q) respectively.
We consider the trapezoid defined as the convex hull of the

points (0,−b), (0,−(b+δ)), (L, aL−b) and (L, (a+ε)L−(b+
δ)) defined as the intersection points of the lines lp and lq
with the vertical lines x = 0 and x = L that bound RL. The
area of this trapezoid is L(|δ|+(|εL−δ|)/2. which is at most
L(|ε|L/2 + |δ|). This is maximized to LD

√
4 + L2/2 when

ε = LD/
√

4 + L2, δ = 2D/
√

4 + L2. Note that the area
of this trapezoid is at least AL(lp, lq). Hence, AL(lp, lq) ≤
LD
√

4 + L2/2 from which the result follows.

We can now state our main result:

Theorem 4.4. Let An be an arrangement of n lines each
of which intersects RL and is dual to a point of RL.

i) For any D > 0, we can find an arrangement A′n′ of n′

lines in RL such that dL(An, A′n′) ≤ D and n′ ≤ n/2 + (4 +
L2)/(4D)2

ii) For any r such that 1/2 < r <= 1, we can find an
arrangement A′rn such that
dL(An, A′rn) ≤

�
(L2 + 4)/(16 ∗ (r − 1/2)n)

Proof. Let Sn be the set of points dual to the lines of
the arrangement An. Let D′ = 2LD/

√
4 + L2 and observe

that if the distance between two points is less than D′, then
the distance between their dual lines is less than D (by The-
orem 4.3).

Using Theorem 4.2, we note that we can find a set Tn′ of
n′ points such that d(Sn, Tn′) < D′ and n′ ≤ n/2+L2/4D

′2.
Substituting for D′ yields part i) of the theorem.

Part ii) of the theorem is proved by substituting rn for n′

and solving the inequality rn ≤ n/2 + (4 + L2)/D2 for D.

These results show that one round of our algorithm is
certain to give a good approximation. It remains an open
problem to extend our theoretical underpinnings to support
the empirical observations that applying our algorithm in
multiple rounds continues to yield good approximations.

5. EXPERIMENTAL RESULTS
We implemented our algorithm in C on a Silicon Graph-

ics workstation. To visualize the experiments and the re-
sults, we used the geometric animation system GASP [41].
We measured the approximations of arrangements and also
applied these approximations to the problem of computing
discrepancies [39].

Approximations
To test the quality of our algorithm, we created approxi-

mations for line arrangements generated by different random
distributions [33], and created their dual lines according to
the duality transform Dual2. This set of lines was the input
to our algorithm.

To illustrate the quality our results, each of the Figures 2–
6 presents the arrangement of a set of 50 lines generated
with a specific distribution, and the approximating arrange-
ment generated by a set of about half the number of lines,
as produced by our algorithm. Typically the approximation
would be run on larger inputs to yield better compression
but the images from such runs are too cluttered to include
in this document. In Figure 2 the input points were gen-
erated using a uniform distribution in the unit square. In



Figure 3 the input points were generated using a uniform
distribution on the edge of a circle. In Figure 4 the input
points were generated using a uniform distribution inside a
circle. In Figure 5 the input points were generated using a
multi-variant normal distribution at ten points in the unit
square. In Figure 6 the input points were generated using a
uniform distribution on the diameter of the unit square.

To evaluate the resulting approximating arrangements, we
measured the Hausdorff distance of the arrangement from its
approximation.

Table 1 summarizes some of our results or arrangements of
up to 10, 000 lines. It can be seen that the distance from the
original arrangement to the resulting one is very small even
when the approximating arrangement is one tenth the size of
the given arrangement. The exact distance depends on the
type of distribution used to generate the lines. Moreover, as
expected, as we allow more compression, the quality of the
arrangement degrades, and the distance error grows.

No lines in L No lines in L1 Distribution Distance
1000 750 Uniform 0.019436
1000 562 Uniform 0.028740
1000 315 Uniform 0.048049
1000 177 Uniform 0.082842
1000 99 Uniform 0.146336
5000 3750 Uniform 0.010350
5000 2812 Uniform 0.011549
5000 1581 Uniform 0.021419
5000 888 Uniform 0.035084
5000 499 Uniform 0.077760
10000 7500 Uniform 0.005839
10000 5625 Uniform 0.009475
10000 3163 Uniform 0.014833
10000 1779 Uniform 0.030319
10000 1000 Uniform 0.050047
1000 750 Annulus 0.000135
1000 562 Annulus 0.000392
1000 315 Annulus 0.001057
1000 177 Annulus 0.002391
1000 99 Annulus 0.003271
10000 7500 Annulus 0.000303
10000 5625 Annulus 0.000325
10000 3163 Annulus 0.000325
10000 1779 Annulus 0.000386
10000 1000 Annulus 0.000919
1000 750 Clusnorm 0.005101
1000 562 Clusnorm 0.020207
1000 315 Clusnorm 0.044425
1000 177 Clusnorm 0.139449
1000 99 Clusnorm 0.199697
10000 7500 Clusnorm 0.005402
10000 5625 Clusnorm 0.005839
10000 3163 Clusnorm 0.007716
10000 1779 Clusnorm 0.012288
10000 1000 Clusnorm 0.021373
1000 750 Ball 0.020309
1000 562 Ball 0.023880
1000 315 Ball 0.047370
1000 177 Ball 0.075209
1000 99 Ball 0.102761
10000 7500 Ball 0.007984
10000 5625 Ball 0.015156
10000 3163 Ball 0.016478
10000 1779 Ball 0.028706
10000 1000 Ball 0.046705

Table 1: Error Results

Application: Computing the Discrepancy
Supersampling is one of the most common approaches to

the anti-aliasing problem in computer graphics. Since it

has been shown that uniform sampling can lead to aliasing
artifacts, a common approach has been to make use of the
theory of discrepancy [39].

The discrepancy of a set Sn of n points is defined as fol-
lows. For a given line l, l divides the square into 2 parts,
R+(l) and R−(l), with R+(l) (resp. R−(l)) lying above
(resp. below) the line l. In an ideal world, the fraction
of the points of Sn that lie in region R+(l) would be exactly
the area of R+(l). The discrepancy of Sn with respect to l
is the absolute value of the difference between these quanti-
ties. The discrepancy of the point set Sn is measured as the
maximum discrepancy of Sn with respect to l over all lines
l.

Previously, we showed a method to compute the discrep-
ancy of a set of n points in O(n2) [10, 9]. Building upon
that algorithm, we now use the approximation techniques
described in the current paper to reduce the complexity of
arrangements by constant factors.

Table 2 describes our empirical results. We get signifi-
cant speedups with relatively small errors. In particular, our
behavior is best for uniform distributions, which are most
common in this domain. For instance, for a uniform distri-
bution (with 1000 points) we get a speedup by a factor of
116 while introducing errors of less than 2.5%, or a speedup
by a factor of 205 while introducing errors of about 5.5%.

To further evaluate our method, we compared it to the
method of merely using random sampling. In this method,
we would choose at random a subsample of the original
points and compute their discrepancy as an approximation
to the actual discrepancy. This subsample had the same
size that we got by our approximations scheme, so that the
discrepancy computation algorithm ran in the same time for
both approximations. The nature of discrepancy computa-
tions suggests that this should be a reasonable approach. We
were pleasantly surprised to notice that our scheme works
much better than random sampling for discrepancy. For in-
stance, in cases where our scheme was off by 5%, this type
of random sampling was off by 15% or 25% or more.

Visualization
Visualization [41] played an important role in this re-

search. While runs produce numbers that tell us how good
a replacement scheme is, they do not help to understand
where a scheme can be improved. Through visualization, the
weaknesses of a replacement scheme came to light. Through
visualization we found out that the intuitive way of replac-
ing two lines by a line which is the dual of the midpoint
(of the dual points), is not what we expected. In addition,
with visualization we could indeed make our lines thicker
and check that the approximating arrangement is indeed
what we would get if we drew the original arrangement with
thick lines. Finally, visualization helped us to check various
duality transforms, and decide which ones fit our domain.
The accompanying video [12] was developed along with the
development of this research.

6. CONCLUSIONS
We described in this paper a technique for approximating

arrangements of lines in the plane, so that the number of
lines defining the arrangement is reduced by a constant frac-
tion. We showed theoretical error bounds on our approach,
as well as practical error bounds. We also showed how these
ideas can be applied to compute discrepancies where our em-



Distribution Exact Discrepancy Approximating Discrepancy Error (%) Speedup
No. points discrepancy run-time No. points discrepancy run-time

Uniform 1000 0.251422 14.809 500 0.253156 3.455 0.689 4.286
Uniform 1000 0.252619 14.709 100 0.258625 0.126 2.377 116.738
Uniform 1000 0.251783 14.754 75 0.265734 0.072 5.540 204.916
Uniform 1000 0.252057 14.698 50 0.278013 0.034 10.297 432.294
Normal 1000 0.38605 14.671 500 0.37405 3.506 3.208 4.184
Normal 1000 0.38386 14.802 200 0.371838 0.507 3.233 29.19
Normal 1000 0.381412 14.797 150 0.363747 0.280 4.856 52.846
Normal 1000 0.390162 14.790 100 0.365415 0.125 6.772 118.32
Uniform 5000 0.25088 334.398 2500 0.250998 78.655 0.047 4.2514
Uniform 5000 0.250346 332.544 1000 0.251796 11.466 0.579 29.0
Uniform 5000 0.250538 335.438 500 0.254636 2.662 1.63568 126.0
Uniform 5000 0.250249 339.140 375 0.255739 1.466 2.1938 231.337
Uniform 5000 0.25019 332.904 250 0.255567 0.633 2.149 525.9
Normal 5000 0.379133 334.637 2500 0.368188 78.132 2.972 4.283
Normal 5000 0.380262 335.891 1000 0.358189 11.404 6.162389 29.453788
Normal 5000 0.379393 338.563 750 0.35601 6.291 6.568 53.817
Normal 5000 0.380474 332.526 500 0.357025 2.683 6.568 123.938

Table 2: Approximating Discrepancy

50 lines approximation with 24 lines

Figure 2: Uniform Distribution

50 lines approximation with 24 lines

Figure 3: Annulus Distribution



50 lines approximation with 24 lines

Figure 4: Ball Distribution

50 lines approximation with 24 lines

Figure 5: Clusnorm Distribution

50 lines approximation with 24 lines

Figure 6: Cubediam Distribution



pirical studies indicate that we can get speedups by factors
of 200 while introducing errors of less than 5%.

Compression of arrangements has great potential in many
applications, in addition to computing the discrepancy as
discussed in the paper. Two other applications seem promis-
ing. The first is the visualization of huge amounts of data.
Typically, we are willing to tolerate errors in such situations
if the algorithm runs in real-time. We show here how our
method applies to lines in the plane. We would like to check
similar ideas for other objects in other domains. Another
important application is quick and dirty path planning. In
robotics it is usually the case that exact path planning is
needed, and thus one needs to deduce a real path from the
approximation. In computer graphics, however, small errors
are often tolerable.

It would be easy to introduce a variable metric to our
method. This would allow the user (or a program) to high-
light regions (in dual or primal space) where less compres-
sion is desired.

We have made preliminary studies of this algorithm as
a clustering algorithms [13]. The idea is to use the com-
pressed set of lines as the starting point for some clustering
algorithms (i.e., the k means), and see if the algorithm then
converges faster. Our preliminary work here is promising.
Further work is needed to fully demonstrate the applicability
of this approach.
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