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42 COMPUTER GRAPHICS
David Dobkin and Seth Teller

INTRODUCTION

Computer graphics is often given as a prime application area for the techniques
of computational geometry. The histories of the two fields have a great deal of
overlap, with similar methods (e.g. sweep-line and area subdivision algorithms)
arising independently in each. Both fields have often focused on similar problems,
although with different computational models. For example, hidden surface removal
(visible surface identification) is a fundamental problem of computer graphics. This
problem has also motivated many researchers in computational geometry. At the
same time, as the fields have matured, they have brought different requirements
to similar problems. Here, we aim to highlight both similarities and differences
between the fields.

Computational geometry is fundamentally concerned with the efficient quanti-
tative representation and manipulation of ideal geometric entities to produce exact
results. Computer graphics shares these goals, in part. However, graphics practi-
tioners also model the interaction of objects with light and with each other, and the
media through which these effects propagate. Moreover, graphics researchers and
practitioners: 1) typically use finite precision (rather than exact) representations
for geometry; 2) rarely find closed-form solutions to problems, instead employing
sampling strategies and numerical methods; 3) often design explicit tradeoffs be-
tween running time and solution quality into their algorithms; and 4) implement
most algorithms they propose.

GLOSSARY

Radiometry: The quantitative study of electromagnetic radiation.

Simulation: The representation of a natural process by a computation.

Psychophysics: The study of the human visual system’s response to electro-
magnetic stimuli.

GEOMETRY VS. RADIOMETRY AND PSYCHOPHYSICS

Computer graphics can be formulated as a radiometrically “weighted” counterpart
to computational geometry. A fundamental computational process in graphics is
rendering: the synthesis of realistic images of physical objects. This is done
through the application of a simulation process to quantitative models of light and
materials to predict (i.e. synthesize) appearance. Of course, this process must ac-
count for the shapes of and spatial relationships between objects, as must computa-
tional geometric algorithms. However, in graphics objects are imbued further with
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material properties, such as reflectance (in its simplest form, color), refractive
index, opacity, and (for light sources) emissivity. Moreover, physically justifiable
graphics algorithms must model radiometry—quantitative representations of light
sources and the electromagnetic radiation they emit (with associated attributes of
intensity, wavelength, phase, etc.). All graphics algorithms which produce output
intended for viewing must also explicitly or implicitly involve psychophysics.

CONTINUOUS IDEAL VS. DISCRETE REPRESENTATIONS

Computational geometry is largely concerned with ideal objects (points, lines, cir-
cles, spheres, hyperplanes, polyhedra), continuous representations (effectively infi-
nite precision arithmetic), and exact combinatorial and algebraic results. Graphics
algorithms (and their implementations) model such objects as well, but do so in
a discrete, finite-precision computational model. For example, most graphics algo-
rithms use a floating-point or fixed-point coordinate representation. Thus, one can
think of most computer graphics computations as occurring on a (2D or 3D) grid.
However, a practical difficulty is that the grid spacing is not constant, causing cer-
tain geometric predicates (e.g., sidedness) to change under simple transformations
such as scaling or translation.

An analogy can be made between this distinct choice of coordinates, and the
way in which geometric objects—infinite collections of points—are represented by
geometers and graphics researchers. Both might represent a sphere similarly—say,
by a center and radius. However, an algorithm to render the sphere must select
a finite set of “sample” points on its surface. These sample points typically arise
from the position of a synthetic camera, and the locations of display elements on
a two-dimensional display device, for example pixels on a computer monitor or ink
dots on a page in a computer printer. The colors computed at these (zero-area)
sample points, through some radiometric computation, then serve as an assignment
to the discrete value of each (finite-area) display element.

CLOSED-FORM VS. NUMERICAL SOLUTION METHODS

Rarely does a problem in graphics demand a closed-form solution. Instead, graphi-
cists typically rely on numerical algorithms to estimate solution values in an iter-
ative fashion. Numerical algorithms are chosen by reason of efficiency, or of sim-
plicity. Often, these are antagonistic goals. Aside from the usual dangers of finite-
precision arithmetic (Chapter 35), other types of error may arise from numerical
algorithms. First, using a point-sampled value to represent a finite-area function’s
value leads to discretization errors—differences between the reconstructed (inter-
polated) function, which may be piecewise-constant, piecewise-linear, piecewise-
polynomial etc., and the piecewise-continuous (but unknown) true function. These
errors may be exacerbated by a poor choice of sampling points, by a poor piecewise
function representation or basis, or by neglect of boundaries along which the true
function or its derivative have strong discontinuities. Also, numerical algorithms
may suffer bias and converge to incorrect solutions (e.g., due to misweighting, or
omission, of significant contributions).
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TRADING SOLUTION QUALITY VS. COMPUTATION TIME

The most successful graphics algorithms recognize sources of error and seek to
bound them by various means. Moreover, for efficiency’s sake an algorithm might
deliberately introduce error. For example, while rendering, objects might be crudely
approximated to speed the geometric computations involved. Alternatively, in a
more general illumination computation, many instances of combinatorial interac-
tions (e.g., reflections) between scene elements might be ignored except when they
have a significant effect on the computed image or radiometric values. Graphics
practitioners have long sought to exploit this intuitive “tradeoff” between solution
quality and computation time.

THEORY VS. PRACTICE

Graphics algorithms, while often designed with theoretical concerns in mind, are
typically intended to be of practical use. Thus, while computational geometers and
computer graphicists have an enormous overlap of interest in geometry, graphicists
develop computational strategies which can feasibly be implemented on modern
machines. Also, while computational geometric algorithms often assume “generic”
inputs, in practice geometric degeneracies do occur, and inputs to graphics algo-
rithms are at times highly degenerate (for example, comprised entirely of isothetic
rectangles).

Thus, algorithmic strategies are shaped not only by challenging inputs which
arise in practice, but also by the technologies available at the time the algorithm is
proposed. The relative bandwidths of CPU, bus, memory, network connections, and
tertiary storage have major implications for graphics algorithms involving interac-
tion or large amounts of simulation data, or both. For example, in the 1980’s the
decreasing cost of memory, and the need for robust processing of general datasets,
brought about a fundamental shift in most practitioners’ choice of computational
techniques for resolving visibility (from combinatorial, object-space algorithms to
brute force, screen-space algorithms). The increasing power of general-purpose pro-
cessors, the emergence of sophisticated, robust visibility algorithms, and the wide
availability of dedicated low-level graphics hardware may bring about yet another
fundamental shift.

TOWARD A MORE FRUITFUL OVERLAP

Given such substantial overlap, there is an enormous potential for fruitful collabo-
ration between geometers and graphicists (see [CAAT96] for a recent call for just
this kind of collaboration). One mechanism for spurring such collaboration is the
careful posing of models and open problems to both communities. To that end,
these are interspersed through the remainder of this chapter.
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42.1 GRAPHICS AS A COMPUTATIONAL PROCESS

This section gives an overview of three fundamental graphics operations: acqui-
sitton of simulation data; representation of such data and associated attributes
and energy sources; and simulation of these to predict behavior or appearance.
One fundamental simulation process, rendering, is partitioned into subcompo-
nents of visibility and shading, which are treated in separate sections below.

MODELING, ACQUISITION, AND SIMPLIFICATION

In practice, algorithms require input. Realistic scene generation demands extremely
complex geometric and radiometric models—for example, of scene geometry and
reflectance properties, respectively. These inputs must arise from some source; this
“model acquisition” problem is a core problem in graphics. Models may be gener-
ated by a human designer (for example, using Computer-Aided Design packages),
generated procedurally (for example, by applying recursive rules), or constructed by
machine-aided manipulation of image data (for example, generating 3D topograph-
ical maps of terrestrial or extra-terrestrial terrain from multiple photographs) or
other machine sensing methods (e.g., [CL96]). Methods for completely automatic
(i.e., non human-assisted) generation of large-scale geometric models are still in
their infancy; see Chapter 47. When datasets become extremely large, some kind
of hierarchical, persistent spatial database is required for efficient storage and ac-
cess to the data [FKST96], and simplification algorithms are necessary to store and
display complex objects with varying fidelity (see, e.g., [CVM ™96, HDD*92]).

REPRESENTATION: GEOMETRY, LIGHT, AND FORCES

Once a geometric model is acquired, it must be represented, and perhaps indexed
spatially for efficient manipulation. A broad variety of intrinsic (winged-edge, quad-
edge, facet-edge, etc.) and extrinsic (quadtree, octree, kd-tree, BSP tree, B-rep,
CSG, etc.) data structures have been developed to represent geometric data. Con-
tinuous, implicit functions have been used to model shape, as have discretized volu-
metric representations, in which data types or densities are associated with spatial
“voxels.” A subfield of modeling, Solid Modeling (Chapter 47), represents shape,
mass, material, connectivity, etc. properties of objects, in particular so that com-
plex object assemblies may be defined, e.g. for use in Computer-Aided Machining
environments (Chapter 46). Some of these data structures can be adaptively sub-
divided, and made persistent (that is, made to exist in memory and in non-volatile
storage; see Section 42.3), so that models with wide scale variations, or simply an
enormous data size, may be organized. None of the data structures above is uni-
versal; each has been brought to bear in specific circumstances, depending on the
nature of the data (manifold vs. non-manifold; polyhedral vs. curved; etc.) and
the problem at hand. We forego a detailed discussion of representational issues,
referring the reader instead to Chapter 47.
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The data structures alluded to above represent “macroscopic” properties of
scene geometry—shape, gross structure, etc. Representing material properties, in-
cluding reflectance over each surface, and possibly surface microstructure (such as
roughness) and sub-structure (as with layers of skin or other tissue), is another
fundamental concern of graphics. For each, computer graphics researchers craft
and employ quantitative descriptions of the interaction of radiant energy and/or
physical forces with objects having these properties. Examples include human-
made objects such as machine parts, furniture, and buildings; organic objects such
as flora and fauna; naturally occurring objects such as molecules, terrains, and
galaxies; and wholly synthetic objects and materials. Analogously, suitable repre-
sentations of radiant energy and physical forces must also be crafted in order that
the simulation process can model such effects as erosion [DPH96].

SIMULATION

Graphics brings to bear a wide variety of simulation processes to predict behav-
ior. For example, one might detect collisions to simulate a pair of tumbling dice,
or simulate frictional forces in order to provide haptic (touch) feedback through a
mechanical device to a researcher manipulating a virtual object [LMC94]. Increas-
ingly, graphics researchers are incorporating spatialized sounds into simulations as
well. These physically-based simulations are integral to many graphics applications.
However, the generation of synthetic imagery is the most fundamental operation in
graphics. The next section describes this “rendering” problem.

RENDERING

GLOSSARY

Rendering problem: Given quantitative descriptions of surfaces and their prop-
erties, light, and the media in which these are embedded, rendering is the appli-
cation of a computational model to predict appearance; that is, rendering is the
synthesis of images from simulation data. Rendering typically involves for each
surface a Visibility computation followed by a Shading computation.

Visibility computation: The determination of whether some set of surfaces, or
sample points, is visible to a synthetic observer.

Shading computation: The determination of radiometric values on the surface
(eventually interpreted as colors) as viewed by the observer.

For static scenes, and with more difficulty when conditions change with time,
rendering can be factored into geometrically and radiometrically view-independent
tasks (such as spatial partitioning for intervisibility, and the computation of diffuse
illumination) and their view-dependent counterparts (culling and specular illumi-
nation, respectively). The view-independent tasks can be cast as precomputations,
while at least some view-dependent tasks cannot occur until the instantaneous
viewpoint is known. Recently, these distinctions have been somewhat blurred by
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the development of data structures that organize lazily-computed, view-dependent
information for use in an interactive setting [TBD96].

We discuss the two major components of Rendering: Visibility (Section 42.2)
and Shading (Section 42.3), and review the formulation of Shading as a spatially
distributed, recursive, radiometrically weighted Visibility computation. In the dis-
crete domain, we discuss Sampling (Section 42.4). We then pose several challenges
for the future, comprising problems of current or future interest in computer graph-
ics in which computational geometry may have a substantial impact (Section 42.5).
Finally, we list several further references (Section 42.6).

42.2 VISIBILITY

GLOSSARY

Pizel: Picture element, for example on a raster display.

Viewport: A 2D array of pixels, typically comprising a rectangular region on a
computer display.

View Frustum: A truncated rectangular pyramid, representing the synthetic
observer’s field of view, with the synthetic eyepoint at the apex of the pyramid.
The truncation is typically accomplished using “near” and “far” clipping planes,
analogous to the “left, right, top, and bottom” planes that define the rectangular
field of view. (If the synthetic eyepoint is placed at infinity, the frustum becomes
a rectangular parallepiped.) Only those portions of the scene geometry which
fall inside the view frustum are rendered.

Rasterization: The transformation of a continuous scene description, through
discretization and sampling, into a discrete set of pixels on a display device.
Ray casting: A hidden-surface algorithm in which, for each pixel of an image, a
ray is cast from the synthetic eyepoint through the center of the pixel [App68].
The ray is parametrized by a variable ¢ such that ¢ = 0 is the eyepoint, and ¢t > 0
indexes points along the ray increasingly distant from the eye. The first inter-
section found with a surface in the scene (i.e., that intersection with minimum
positive t) locates the visible surface along the ray. The corresponding pixel is

assigned the intrinsic color of the surface, or some computed value.

Depth-buffering (also z-buffering): An algorithm which resolves visibility by
storing a discrete depth (initialized to some large value) at each pixel [Cat74].
Only when a rendered surface fragment’s depth is less than that stored at the
pixel can the fragment’s color replace that currently stored at the pixel.

LOCAL VISIBILITY COMPUTATIONS

Given a scene composed of modeling primitives (e.g., polygons, or spheres), and a
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viewing frustum defining an eyepoint, a view direction and field of view, the visi-
bility operation determines which scene points or fragments are visible—connected
to the eyepoint by a line segment that meets the closure of no other primitive.
The visibility computation is global in nature, in the sense that the determination
of visibility along a single ray may involve all primitives in the scene. Typically,
however, visibility computations can be organized to involve coherent subsets of
the model geometry.

In practice, algorithms for visible surface identification operate under severe
constraints. First, available memory is limited. Second, the computation time
allowed may be a fraction of a second—short enough to achieve interactive refresh
rates under changes in viewing parameters (for example, the location or viewing
direction of the observer). Third, visibility algorithms must be simple enough to
be practical, but robust enough to apply to highly degenerate scenes that arise in
practice.

The advent of machine rendering techniques brought about a cascade of screen-
space and object-space combinatorial hidden-surface algorithms, famously surveyed
and synthesized in [SSS74]. However, a memory-intensive screen-space technique—
depth-buffering—soon won out due to its brutal simplicity and the decreasing cost
of memory. In depth-buffering, specialized hardware performs visible surface deter-
mination independently at each pixel. Each polygon to be rendered is rasterized,
producing a collection of pixel coordinates and an associated depth for each. A
polygon fragment is allowed to “write” its color into a pixel only if the depth of
the fragment at hand is less than the depth stored at the pixel (all pixel depths
are initialized to some large value). Thus, in a complex scene each pixel might
be written many times to produce the final image, wasting compute and memory
bandwidth. This is known as the overdraw problem.

Two decades of spectacular improvement in graphics hardware have ensued,
and high-end graphics workstations now contain hundreds of increasingly complex
processors which clip, illuminate, rasterize, and texture millions of polygons per
second. This capability increase has naturally led users to produce ever more com-
plex geometric models, which suffer from increasing overdraw. Object simplification
algorithms, which represent complex geometric assemblages with simpler shapes,
do little to reduce overdraw. Thus, visible-surface identification (hidden-surface
elimination) algorithms have again come to the fore. In recent years, several hybrid
object-space/screen-space visibility algorithms have emerged (e.g., [GKM93]). As
general purpose processors continue to become faster, such hybrid algorithms will
become more widely used. In certain situations, these algorithms will operate en-
tirely in object space, without relying on special-purpose graphics hardware [CT96].
That is, sufficiently fast processors and efficient algorithms will augment, and may
supplant, the depth-buffer in graphics architectures of the coming decade.

GLOBAL VISIBILITY COMPUTATIONS

Real-time systems perform visibility computations from an instantaneous synthetic
viewpoint along rays associated with one or more samples at each pixel of some
viewport. However, visibility computations also arise in the context of global illu-
mination algorithms, which attempt to identify all significant light transport among
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point and area emitters and reflectors, in order to simulate realistic visual effects
such as diffuse and specular interreflection and refraction. A class of “global” visi-
bility algorithms has arisen for these problems. For example, in radiosity computa-
tions, a fundamental operation is determining area-area visibility in the presence
of blockers; that is, the identification of those (area) surface elements visible to
a given element, and for those partially visible, all tertiary elements causing (or
potentially causing) occlusion [HW91, HSA91].

CONSERVATIVE ALGORITHMS

Graphics algorithms often employ quadrature techniques in their innermost loops—
for example, estimating the energy arriving to one surface from another by casting
multiple rays and determining an energy contribution along each. Thus, any effi-
ciency gains in this frequent process (e.g., omission of energy sources known not
to contribute any energy at the receiver, or omission of objects known not to be
blockers) will significantly improve overall system performance. Similarly, occlusion
culling algorithms (omission of objects known not to contribute pixels to the ren-
dered image) can significantly reduce overdraw. Both techniques are examples of
conservative algorithms, which overestimate some geometric set by combinatorial
means, then perform a final sampling-based operation which produces a (discrete)
solution or quadrature. Of course, the success of conservative algorithms in practice
depends on two assumptions: first, that through a relatively simple computation, a
usefully tight bound can be attained on whatever set would have been computed by
a more sophisticated (e.g., exact) algorithm; and second, that the aggregate time
of the conservative algorithm and the sampling pass is less than that of an exact
algorithm for input sizes encountered in practice.

This idea can be illustrated as follows. Suppose one is to render an n-polygon
scene. Should one choose to render ezactly the visible fragments, one’s algorithm
would expend at least kn? time, since since n polygons (e.g., two slightly misaligned
combs, each with n/2 teeth) can cause O(n?) visible fragments to arise. But a
conservative algorithm might simply render all n polygons, incurring some overdraw
(to be resolved by a depth-buffer) at each pixel, but expending only time linear in
the size of the input.

This highlights an important difference between computational geometry and
computer graphics. Standard computational geometry cost measures would show
that the O(n?) algorithm is optimal in an output-sensitive model (see Chapter 25).
In computer graphics, hardware considerations motivate a fundamentally different
approach: rendering a (judiciously chosen) superset of those polygons which will
contribute to the final image. A major open problem is to unify these approaches
by finding a cost function that effectively models such considerations (see below).

HARDWARE TRENDS

Special-purpose graphics hardware may go away, except for the crossbar switch
[MCEF94], or geometric transformation operation, that takes rendered entities from
their initial locations (fragments of object-space primitives) to their final location
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in screen space (rendered pixels). Likewise, modern graphics architectures must
perform visibility determination, and all contain some form of depth buffer. How-
ever, given sufficiently fast ray casting capability, the depth buffer might no longer
be necessary. One could perform “analytic visibility” at each pixel, obviating the
standard graphics technique of fragmenting all objects into large collections of poly-
gons, then rasterizing them. Another alternative is “image-based” rendering (see
below).

OPEN

PROBLEMS

Each of the problems below assumes a geometric model consisting of n polygons.

1.

Solved Problem: The set of visible fragments can have complexity w(n?) in
the worst case. However, the complexity is lower for many scenes. If k is the
number of edge incidences (vertices) in the projected visible scene, the set of
visible fragments can be computed in optimal output sensitive O(nk/?1g n)
time [SO92]. See Chapter 25.

. Give a spatial partitioning and ray casting algorithm that runs in amortized

nearly constant time (that is, has only a weak asymptotic dependence on
total scene complexity). Identify a useful “density” parameter of the scene
(e.g., the largest number of simultaneously visible polygons), and express the
amortized cost of a ray cast in terms of this parameter.

Give an output-sensitive algorithm which, for specified viewing parameters,
determines the set of “contributing” polygons—i.e., those which contribute
their color to at least one viewport pixel.

Give an output-sensitive algorithm which, for specified viewing parameters,
approximates the visible set to within e. That is, produce a superset of the
visible polygons of size (alternatively, total projected area) at most (1 + €)
times the size (projected area) of the true set. Is the lower bound for this
problem asymptotically smaller than that for the exact visibility problem?

For machine-dependent parameters A and B describing the transform (per-
vertex) and fill (per-pixel) costs of some rendering architecture, give an al-
gorithm to compute a superset S of the visible polygon set minimizing the
rendering cost on the specified architecture.

In a local illumination computation, identify those polygons (or a superset)
visible from the synthetic observer, and construct, for each visible polygon P,
an efficient function V (p) which returns 1 iff point p on P is visible from the
viewpoint.

In a global illumination computation, identify all pairs (or a superset) of in-
tervisible polygons, and for each such pair P, (), construct an efficient function
V (p, q) which returns 1 iff point p on P is visible from point ¢ on Q.

Image-based rendering [MB95]: Given a 3D model, generate a minimal
set of images of the model such that for all subsequent query viewpoints, the
correct image can be recovered by combination of the sample images.
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42.3 SHADING

Through sampling and visibility operations, a visible surface point or fragment is
identified. This point or fragment is then shaded according to a local or global
illumination algorithm. Given scene light sources and material reflection and trans-
mission properties, and the propagative media comprising and surrounding the
scene objects, the shading operation determines color and intensity of the incident
and exitant radiation at the point to be shaded. Shading computations can be char-
acterized further as view-independent (modeling only purely diffuse interactions,
or directional interactions with no dependence on the instantaneous eye position)
or view-dependent.

Most graphics workstations perform a “local” shading operation in hardware,
which, given a point light source, a surface point, and an eye position, evaluates
the energy reaching the eye via a single reflection from the surface. This local op-
eration is implemented in the software and hardware offered by most workstations.
However, this simple model cannot produce realistic lighting cues such as shadows,
reflection, and refraction. These require more extensive, global computations as
described below.

GLOSSARY

Irradiance: Total power per unit area impinging on a surface element. Units:
POWER PER RECEIVER AREA.

BRDF: The Bi-directional Reflectance Distribution Function, which maps inci-
dent radiation (at general position and angle of incidence) to reflected exitant
radiation (at general position and angle of exitance). Unitless, in [0..1].

BTDF: The Bi-directional Transmission Distribution Function, which maps inci-
dent radiation (at general position and angle of incidence) to transmitted exitant
radiation (at general position and angle of exitance). Analogous to the BRDF.

Radiance: The fundamental quantity in image synthesis, which is conserved
along a ray traveling through a non-dispersive medium, and is therefore “the
quantity that should be associated with a ray in ray tracing” [CW93]. Units:
POWER PER SOURCE AREA PER RECEIVER STERADIAN.

Radiosity: A global illumination algorithm for ideal diffuse environments. Ra-
diosity algorithms compute shading estimates which depend only on the surface
normal and the size and position of all other surfaces and light sources, and are
independent of view direction. Also a physical quantity with units POWER PER
SOURCE AREA.

Ray tracing: An image synthesis algorithm in which ray casting is followed, at
each surface, by a recursive shading operation involving a hemispherical integral
of irradiance at each surface point. Ray tracing algorithms are best suited to
scenes with small light sources and specular surfaces.

Hybrid: Global illumination algorithms which model both diffuse and directional
interactions (e.g., [SP89)).
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SHADING AS RECURSIVE WEIGHTED INTEGRATION

Most generally, the shading operation computes the energy leaving a differential
surface element in a specified differential direction. This energy depends on the
surface’s emittance, and the product of the surface’s reflectance with the total en-
ergy incident from all other surfaces. This relation is known as the Rendering
Equation [Kaj86], which states intuitively that each surface fragment’s appear-
ance, as viewed from a given direction, depends on any light it emits, plus any
light (gathered from other objects in the scene) which it reflects in the direction
of the observer. Thus shading can be cast as a recursive integration; to shade a
surface fragment F, shade all fragments visible to F, then sum those fragments’
illumination upon F (appropriately weighted by the BRDF or BTDF) with any
direct illumination of F. Effects such as diffuse illumination, motion blur, Fresnel
effects, etc., can be simulated by supersampling in space, time, and wavelength,
respectively, then averaging [CPC84].

Of course, a base case for the recursion must be defined. Classical ray tracers
truncate the integration when a certain recursion depth is reached. If this maximum
depth is set to 1, ray casting (the determination of visibility for eye rays only)
results. More common is to use a small constant greater than one, which leads
to “Whitted” or “classical” ray tracing [Whi80]. For efficiency, practitioners also
employ a thresholding technique: when multiple reflections cause the weight with
which a particular contribution will contribute to the shading at the root to drop
below a specified threshold, the recursion ceases. These termination conditions can,
in some conditions, cause important energy-bearing paths to be overlooked. For
example, an extremely bright light source (such as the sun) filtering through many
parts of a house to reach an interior space may be incorrectly discarded by this
condition.

ALIASING

From a purely physical standpoint, the amount of energy leaving a surface in a par-
ticular direction is the spherical integral of incoming energy, times the bidirectional
reflectance (and transmittance, as appropriate) in the exitant direction. From a
psychophysical standpoint, the perceived color is an inner product of the energy
distribution incident on the retina with the retina’s spectral response function. We
do not consider psychophysical considerations further here.

Global illumination algorithms perform an integration of irradiance at each
point to be shaded. Ray tracing and Radiosity are examples of global illumina-
tion algorithms. Since no closed-form solutions for global illumination are known
for general scenes, practitioners employ sampling strategies. Graphics algorithms
typically attempt “reconstruction” of some illumination function (e.g., irradiance,
or radiance) given some set of samples of the functions’ values, and possibly other
information, for example about light source positions, etc. However, such recon-
struction is subject to error for two reasons.

First, the well-known phenomenon of aliasing occurs when insufficient samples
are taken to find all high-frequency terms in a sampled signal. In image processing,
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samples arise from measurements, and reconstruction error arises from samples
which are too widely spaced. However, in graphics, the sample values arise from a
simulation process; for example, the evaluation of a local illumination equation, or
the numerical integration of irradiance. Thus, reconstruction error can arise from
simulation errors in generating the samples. This second type of error is called
biasing.

For example, classical ray tracers [Whi80] may suffer from biasing in three
ways. First, at each shaded point, they compute irradiance only: from direct
illumination by point lights; along the reflected direction; and along the refracted
direction. Significant “indirect” illumination which occurs along any direction other
than these is not accounted for. Thus indirect reflection and focusing effects are
missed. Classical ray tracers also suffer biasing by truncating the depth of the
recursive ray tree at some finite depth d; thus, they cannot find significant paths of
energy from light source to eye of length greater than d. Third, classical ray tracers
truncate ray trees when their weight falls below some threshold. This can fail to
account for large radiance contributions due to bright sources illuminating surfaces
of low reflectance.

OPEN

PROBLEMS

An enormous literature of adaptive, backward, forward, distribution, etc., ray trac-
ers has grown up to address sampling and bias errors. However, the fundamental
issue can be stated simply as:

1. Given a geometric model M, a collection of light sources L, a synthetic view-
point E, and a threshold e, identify all optical paths to E bearing radiance
greater than e.

2. Given a geometric model M, a collection of light sources L, and a threshold
€, identify all optical paths bearing radiance greater than e.

A related inverse problem arises in machine vision, now being adopted by
computer graphics practitioners as a method for acquiring large-scale geometric
models from imagery:

3. An observation of a real object comprises the product of irradiance and re-
flection (BRDF). How can one deduce the BRDF from such observations?

42.4 SAMPLING

Sampling patterns can arise from a regular grid (e.g., pixels in a viewport) but
these lead to a stairstepping kind of aliasing. One solution is to supersample
(i-e. take multiple samples per pixel) and average the results. However, one must
take care to supersample in a way that does not align with the scene geometry or
some underlying attribute (e.g., texture) in a periodic, spatially varying fashion,
else aliasing (including Moiré patterns) will result.
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DISCREPANCY

The quality of sampling patterns can be evaluated with a measure known as dis-
crepancy. For example, if we are sampling in a pixel, features interacting with
the pixel can be modeled by line segments (representing parts of edges of features)
crossing the pixel. These segments divide the pixel into two regions. A good
sampling strategy will ensure that the proportion of sample points in each region
approximates the proportion of pixel area in that region. The difference between
these quantities is the discrepancy of the point set with respect to the line seg-
ment. We define the discrepancy of a set of samples (in this case) as the maximum
discrepancy with respect to all line segments. Other measures of discrepancy are
possible, as described below.

Sampling patterns are used to solve integral equations. The advantage of using
a low discrepancy set is that the solution will be more accurately approximated,
resulting in a better image. These differences are expressed in solution convergence
rates as a function of the number of samples. For example, truly random sampling
has a discrepancy that grows as O(N~ %) where N is the number of samples. There
are other sampling patterns (e.g. the Hammersley points) that have discrepancy
growing as O(N ! gt~ N ). Sometimes one wishes to combine values obtained by
different sampling methods [VG95]. The search for good sampling patterns, given
a fixed number of samples, is often done by running an optimization process which
aims to find sets of ever-decreasing discrepancy. A crucial part of any such process
is the ability to quickly compute the discrepancy of a set of samples.

COMPUTING THE DISCREPANCY

There are two common questions that arise in the study of discrepancy. First, given
fixed N, how to construct a good sampling pattern in the model described above.
Second, how to construct a good sampling pattern in an alternative model.

For concreteness, consider the problem of finding low discrepancy patterns in
the unit square. The unit square models an individual pixel. As stated above, the
geometry of objects is modeled by edges that intersect the pixel dividing it into two
regions, one where the object exists and one where it does not. An ideal sampling
method would sample the regions proportion to their relative areas.

We model this as a discrepancy problem as follows. Let S be a sample set of
points in the unit square. For a line [ (actually, a segment arising from a polygon
boundary in the scene being rendered), define the two regions St and S~ into
which [ divides S. Ideally, we want a sampling pattern that has the same fraction of
samples in the region ST as the area of S*. Thus, in the region S+, the discrepancy
with respect to [ is [§(SNST)/4(S) — Area(ST)|, where §(-) denotes the cardinality
operator. The discrepancy of the sample set S with respect to a line [ is defined
as the larger of the discrepancies in the two regions. The discrepancy of set S is
then the maximum, over all lines [, of the discrepancy of S with respect to [. The
intuition behind this definition is fairly clear.

Finding the discrepancy in this setting is an interesting computational geometry
problem. First, we observe that we do not need to consider all lines. Rather, we
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need consider only those lines which pass through two of the points in our set plus
a few lines derived from boundary conditions. This suggests the O(n?®) algorithm
of computing the discrepancy of each of the O(n?) lines separately. This can be
improved to O(n?lgn) by considering the fan of lines with a common vertex (i.e.
one of the sample points) together. This can be further improved by appealing to
duality. The traversal of this fan of lines is merely a walk in the arrangement of
lines in dual space that are the duals of the sample points. This observation allows
us to use techniques similar to those in Chapter 21 to derive an algorithm that runs
asymptotically as O(n?). Full details are given in [DEM93].

There are other discrepancy models that arise naturally. A second obvious
candidate is to measure the discrepancy of sample sets in the unit square with
respect to axis-oriented rectangles. Here we can achieve a discrepancy of O(n?Ign),
again using geometric methods. We use a combination of techniques, appealing to
the incremental construction of 2D convex hulls to solve a basic problem, then using
the sweep paradigm to extend this incrementally to a solution of the more general
problem. The sweep is easier in the case in which the rectangle is anchored with
one vertex at the origin, yielding an algorithm with running time O(nlg”n).

The model given above can be generalized to compute bichromatic discrep-
ancy. In this case, we have sample points which are colored either black or red. We
can now define the discrepancy of a region as the difference between its number of
red and black points. Alternatively, we can look for regions (of the allowable type)
that are most nearly monochromatic in red while their complements are nearly
monochromatic in black. This latter model has application in computational learn-
ing theory. For example, red points may represent situations in which a concept
is true, black situations where it is false. The minimum discrepancy rectangle is
now a classifier of the concept. This is a popular technique for computer-assisted
medical diagnosis.

The relevance of these algorithms to computational geometry is that they will
lead to faster algorithms for testing the “goodness” of sampling patterns, and thus
eventually more efficient algorithms with bounded sampling error. Also, algorithms
for computing the discrepancy relative to a particular set system are directly related
to the system’s V-C dimension (see Chapter 31).

OPEN PROBLEMS

Both problems below are posed for the unit cube and unit ball in all dimensions.

1. Given N, generate a minimum-discrepancy pattern of N samples.

2. Given a low-discrepancy pattern of K points, generate a low (or lower) dis-
crepancy pattern of K + 1 points.
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425 FURTHER CHALLENGES

We have described several core problems of computer graphics and shown the im-
pact of computational geometry. We have only scratched the surface of a highly
fruitful interaction; the possibilities are expanding, as we describe below. These
computer graphics problems all build on the combinatorial framework of compu-
tational geometry and so have been, and continue to be, ripe candidates for ap-
plication of computational geometry techniques. Numerous other problems remain
whose combinatoric aspects are perhaps less obvious, but for which interaction may
be equally fruitful. We describe some of these here.

We have focused this chapter on problems in which the parameters are static;
that is, the geometry is unchanging, and nothing is moving (except perhaps the
synthetic viewpoint). Now, we briefly describe situations where this is not the case
and deeper analysis is required. In these situations it is likely that computational
geometry can have a tremendous impact; we sketch some possibilities here.

Each of the static assumptions above may be relaxed, either alone or in com-
bination. For example, objects may evolve with time; we may be interested in
transient rather than steady state solutions; material properties may change over
time; object motions may have to be computed and resolved, etc. There is a
challenge in determining how the techniques of computational geometry can be
modified to address state of the art and future computer graphics tasks in dynamic
environments.

Among the issues we have not addressed where these considerations are impor-
tant are the following:

Collision detection and force feedback. Imagine that every object has an
associated motion, and that some objects (e.g., virtual probes) are interactively
controlled. Suppose further that when pairs of objects intersect, there is a reaction
(due, e.g. to conservation of momentum). Here we wish to render frames, and
generate haptic feedback, while accounting for such physical considerations. Are
there suitable data structures and algorithms within computational geometry to
model and solve this problem (e.g., [LMC94, MC95])?

Model changes over time. In a realistic model, even unmoving objects change
over time, for example becoming dirty or scratched. In some environments, objects
rust or suffer other corrosive effects. Sophisticated geometry representations and
algorithms are necessary to capture and model such phenomena [DPH96].

Inverse processes. Much of what we have described is a feed forward process
in which one specifies a model and a simulation process and computes a result.
Of equal importance in design contexts is to specify a result and a simulation
process, and compute a set of initial conditions that would produce the desired
result. For example, one might wish to specify the appearance of a stage, and deduce
the intensities of hundreds of illuminating light sources that would result in this
appearance [SDSA93]. Or, one might wish to solve an inverse kinematics problem
in which an object with multiple parts and numerous degrees of freedom is specified.
Given initial and final states, one must compute a smooth, minimal energy path
between the states, typically in an underconstrained framework. This is a common
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problem in robotics (see Chapter 41). However, the configurations encountered in
graphics tend to have very high complexity. For example, convincingly simulating
the motion of a human figure requires processing kinematic models with hundreds
of degrees of freedom.

Ezxternal memory algorithms. Computational geometry assumes a realm in
which all data can be stored in RAM and accessed at no cost (or unit cost). In-
creasingly often, this is not the case in practice. For example, many large databases
cannot be stored in main memory. Only a small subset of the model contributes to
each generated image, and efficient algorithms for efficiently identifying this sub-
set, and maintaining it under small changes of the viewpoint or model, form an
active research area in computer graphics. Given that motion in virtual environ-
ments is usually smooth, and that hard real-time constraints preclude the use of
purely reactive, synchronous techniques, such algorithms must be predictive and
asynchronous in nature [FKST96]. Achieving efficient algorithms for appropriately
shuttling data between secondary (and tertiary) storage and main memory is an
interesting challenge for computational geometry.

42.6 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above may be traced in these surveys.

m  [Dob92]: A survey article on computation geometry and computer graphics.
m  [Dor94]: A survey of object-space hidden-surface removal algorithms.
s [Ya090, LP84]: Surveys of computational geometry.

RELATED CHAPTERS

Chapter 22: Triangulations

Chapter 23: Polygons

Chapter 32: Ray shooting and lines in space
Chapter 36: Parallel algorithms in geometry
Chapter 46: Computer-aided machining
Chapter 47: Solid modeling
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