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ABSTRACT

Computer graphics is a defining application for computational
geometry. The interaction between these fields is explored through two
scenarios. Spatial subdivisions studied from the viewpoint of computa-
tional geometry are shown to have found application in computer graph-
ics. Hidden surface removal problems of computer graphics have led to
sweepline and area subdivision algorithms in computational geometry.
The paper ends with two promising research areas with practical applica-
tions: precise computation and polyhedral decomposition.

1. Introduction

Computational geometry and computer graphics both consider geometric
phenomena as they relate to computing. Computational geometry provides a theoretical
foundation involving the study of algorithms and data structures for doing geometric
computations. Computer graphics concerns the practical development of the software,
hardware and algorithms necessary to create graphics (i.e. to display geometry) on the
computer screen. At the interface lie many common problems which each discipline
must solve to reach its goal. The techniques of the field are often similar, sometimes dif-
ferent. And, each fields has built a set of paradigms from which to operate. Thus, it is
natural to ask the question:

How do computer graphics and computational geometry interact?

It is this question that motivates this paper.

I explore here life at the interface between computational geometry and computer
graphics. Rather than striving for completeness (see e.g. Yao [Ya] for a broader survey),
I consider in detail two scenarios in which the two fields have overlapped. The goal is to
trace the development of the ideas used in the two areas and to document the movement
back and forth.
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No survey of computational geometry would be complete without mentioning spa-
tial subdivisions, convex hulls, the Voronoi diagram and Delaunay triangulation. These
ideas are now finding significant application in computer graphics. Similarly, the hidden
surface removal problem and its variants have historically been the core problems of
computer graphics. Early algorithms developed to solve this problem have been further
developed by computational geometers as both theoretical and practical tools.

In the next section, I discuss techniques for creating and searching spatial subdivi-
sions. Central to the section are the data structures for storing and exploring subdivi-
sions. I show how these data structures are used in the construction of Voronoi diagrams,
Delaunay triangulations and convex hulls of point sets in appropriate Euclidean spaces.
The mathematical ideas are presented along with data structuring details to give a com-
plete sense of the problem and its solution. In addition, I mention application areas
building on the techniques mentioned.

Section 3 begins by describing two techniques which were developed to solve the
hidden line and hidden surface problems of computer graphics. These are the
scanline/sweepline technique and the method of area subdivision. These techniques have
found broad application in both computational geometry and computer graphics. With
each application, the basic technique has been enhanced in interesting directions. I dis-
cuss both the development of the techniques and the applications to which they have
been applied. These techniques are so pervasive in both fields that I can only provide a
brief tour of their applicability.

In Section 4, two additional problem areas are mentioned. The first, precise compu-
tation, constitutes a major open problem of geometric computation. Approaches
currently being explored are mentioned. The second, decomposition of complex objects
into simple primitive elements, lies at the heart of Constructive Solid Geometry model-
ing.

2. Representing subdivisions of plane and space

The central structure used in computational geometry problems is the subdivision.
This is the structure used to store collections of geometric objects (e.g. points, lines,
polygons, ... ) and represent their interrelationships. Various fundamental problems rely
on these structures. The most important of these are the convex hull and the Voronoi
diagram and Delaunay triangulation (to be described below).

In this section, we study the development of techniques for handling subdivisions.
We begin by giving some early history of the problem. Then, the mathematical tech-
niques used to model the problem are given. This is followed by the development of the
data structures for solving the problem. We trace these data structures through the
development of algorithms which can be feasibly implemented. We conclude the section
with a description of application areas which build upon these techniques.

2.1. Roots of the problem

In 1971, Graham [Gr1] published an algorithm for computing the convex hull of a
set of points in the plane based on sorting the points by angle and then scanning them.
His work arose from the need of a statistics group within Bell Labs to be able to
efficiently cluster data samples [Gr2]. In 1974, Dobkin and Lipton [DL1, DL2] gave the
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first algorithms for searching in spatial subdivisions. Their work arose from an open
problem given in Knuth [Kn] asking how to preprocess a set of points to be able to find
nearest neighbors efficiently. In 1975, Shamos and Hoey [S, SH1] proposed efficient
algorithms for finding a closest pair from a set of points. This work became part of
Shamos’ thesis which initiated the field of computational geometry. Although it wasn’t
realized at the time, finding convex hulls, building and searching spatial subdivisions and
finding nearest neighbors are closely related problems. They have a long mathematical
history and have more recently found application in computer graphics.

The Graham algorithm was introduced as a solution of a real problem. The spatial
searching and closest point algorithms were initially of purely theoretical interest. The
search algorithms, though motivated by real problems required enormous amounts of
preprocessing time to generate search structures requiring unreasonable amounts of
storage space. The closest point algorithms were based upon the rediscovery of the
Voronoi diagram [Vo]. Techniques were given for computing the diagram efficiently in
an asymptotic sense but these algorithms did not lend themselves to easy implementa-
tion.

Computational geometry researchers continued to explore extensions of the algo-
rithms given above and appropriate data structures for their implementation. These
extensions involved techniques which were efficient enough to be implementable as well
as solutions to related problems in higher dimensions or for special data sets. As this was
happening, Baumgart developed the winged edge data structure [Ba] to support his
research in computer vision. This structure would prove useful as a starting point for
implementation methods I discuss below.

2.2. Setting for the problem

Having briefly given the early history, I now set the notation that will be used in this
section. We consider subsets of Ed, d-dimensional Euclidean space (typically for d=2,3).

Our geometries are composed of points, edges, polygons and polyhedra. A
polyhedron is the 3 dimensional analog of a polygon. A polyhedron is composed of ver-
tices, edges and faces. The faces are polygons. We define the degree of a vertex (resp.
face) as the number of edges to which it is adjacent (resp. the number of edges that com-
pose it). Notice that a polyhedron can be ‘‘unfolded’’ and stretched out in the plane.
This unfolding results in a structure we will call a planar subdivision.

If S is a collection of points in Ed, we define the convex hull of the points of S to be
the smallest convex body containing all of the points of S. In the plane, this body is a
polygon. In 3D, it is a closed polyhedron (called a polytope). It is composed of no more
than |S| vertices.

A spatial subdivision is a subdivision of part or all of Ed into d-dimensional polyhe-
dra. These polyhedra are restricted to having only boundary intersections. We will
further restrict our subdivisions to consist only of convex regions. Note that any subdivi-
sion can be transformed into one consisting of only convex regions with the possible
addition of new vertices (see [Pa]).

Thus, a planar subdivision is a subdivision of a portion of the plane into polygonal
regions. An example is shown in Figure 1. Note that the vertices and polygons need not
all have the same degree. When all polygons in a planar subdivision are triangles, the
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subdivision in called a triangulation. Any planar subdivision can be made into a triangu-
lation.

Figure 1: A triangulation of a point set

In 3 dimensions, a subdivision is composed of polyhedra, polygons, edges and ver-
tices. Notice that even though a vertex in 2D could have arbitrary degree, we could still
create an ordering of the edges to which it was adjacent. This is not easily doable in 3D.
Furthermore, each polyhedron making up the subdivision is itself equivalent to a planar
subdivision. The analog of a triangulation here is the decomposition into tetrahedra.

A planar subdivision as shown in Figure 1 may be of interest in some applications.
However, many applications depend on subdivisions having particular properties. Two of
the most important such properties are realized by the Voronoi diagram and the Delaunay
triangulation. The Voronoi diagram defines for each site the region of space for which it
is the closest site. In the plane, the Delaunay triangulation has property that its minimum
angle is maximal over all triangulations [Ed1].

The Voronoi diagram [Vo] is built from a set of input points, called sites.
Corresponding to each site is the set of points of Ed which are closer to that site than to
any other site. For example, the dotted lines in Figure 2 give the Voronoi diagram for the
set of sites shown triangulated in Figure 1. Voronoi diagrams can be used to solve vari-
ous nearest neighbor problems. For example, the sites might represent positions where a
commodity is available. The region corresponding to a given site would then represent
those points from which this is the site of choice for getting the commodity. Or, we
might want to find for each site, the other site to which it is closest.

The Delaunay triangulation [De] is also constructed from a set of sites. In the plane,
we build a triangulation of a point set by connecting pairs of sites. This technique can be
used to generate an exponential number of different triangulations. For many applica-
tions, some of these triangulations are preferable to others. For example, triangulations
where triangles are more nearly equilateral are often more desirable than those having
many long skinny triangles. We can capture this property by asking for the triangulation
which has the largest smallest angle. And, the triangulation which achieves this is the
Delaunay triangulation.

The Delaunay triangulation is defined by requiring that no site lie within the cir-
cumscribing circle of any triangle of the triangulation. Alternatively, for any two
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Figure 2: The Voronoi diagram and Delaunay triangulation

triangles of the Delaunay triangulation which share an edge, that edge is the shorter of
the two diagonals of the induced quadrilateral. It can be shown that flipping diagonals to
achieve this property is a procedure that converges so that the Delaunay triangulation is
well defined. The solid lines in Figure 2 show the Delaunay triangulation of the sites.

The Delaunay triangulation and Voronoi diagrams are closely related. Edges of the
Voronoi diagram create vertices that correspond to the triangles of the Delaunay triangu-
lation. That is, if two Voronoi regions share a boundary edge the underlying sites are
connected in the Delaunay triangulation. The Voronoi diagram and Delaunay triangula-
tion can be viewed as abstract graphs. These graphs are said to be duals as can be seen in
Figure 2.

While much of the previous development has been restricted to 2 (or in some cases
3) dimensions, the ideas extend to higher dimensions as well. The extension of a
polyhedron is simply a higher dimensional polyhedron composed of components of all
smaller dimensions (each of which is itself a polyhedron). Spatial subdivisions follow
from planar subdivisions with the added possibility of boundary pieces (which are again
polyhedra) of all intermediate dimensions. However, the complexity of description can
increase substantially with the dimension. This makes the problem of traversing a spatial
subdivision significantly more difficult as we mention below.
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The Voronoi diagram and Delaunay triangulation can be defined in higher dimen-
sions as they were above. For the Voronoi diagram regions are now polyhedra (rather
than polygons) composed of those points closest to a site. The Delaunay triangulation is
now composed of d-simplices. A d-simplex is defined recursively by adding to a d − 1
simplex an additional point which is linearly independent of the others and connecting it
to all points of the d − 1 simplex. For example, a 2-simplex is a triangle and a 3-simplex
is a tetrahedron. Now, the Delaunay triangulation is composed of simplices defined so
that no additional site lies within their circumscribing d-sphere. Finally, the Voronoi
diagram and Delaunay triangulation of a set of sites represented as graphs are duals in all
dimensions. For further details, see [Ed1].

We conclude this section with one further observation relating the Delaunay tri-
angulation (and so, also the Voronoi diagram) to the convex hull. If we are given a set of
sites in Ed and wish to compute their Delaunay triangulation, we can do so by replacing
the sites by a new set of points in Ed + 1. Then, we compute the convex hull of these
points. Finally, the Delaunay triangulation can be derived from the projection of this
convex hull back to Ed. For further details on this derivation, see [Ed1].

2.3. Towards implementation

Having established sufficient background for Voronoi diagrams, Delaunay triangu-
lations, and convex hulls, it remains to discuss the difficulties encountered with turning
this theory into practice. As the results mentioned above appeared, implementations
slowly followed. The Graham algorithm for computing convex hulls was easily imple-
mented as an extension of a sorting algorithm. However, algorithms for computing the
2D Voronoi diagram and Delaunay triangulation and the 3D convex hull ran into prob-
lems. It was hard to find an appropriate data structure to represent the geometry. These
difficulties arose because incidence relationships become more complex in the next
dimension. It is no longer the case that a vertex (or face) has fixed degree. Indeed, while
we can control one of these quantities (as in the case of a triangulation), we cannot con-
trol both.

Baumgart [Ba] observed that for storing and manipulating planar subdivisions, the
edge was the appropriate structure from which to record incidences. In particular, an
edge of a planar subdivision connects exactly 2 vertices and separates exactly 2 faces.
Baumgart implemented a winged edge structure where an edge stores this topological
information. Each vertex (resp. face) records an edge of which it is an endpoint (resp.
which belongs to it). This is sufficient to trace all edges adjacent to a vertex and all
edges bounding a face in either order. In Figure 3, we show the basic winged edge struc-
ture. The thick edge stores information about the vertices it joins, the faces it separates
and the edges adjacent for each vertex-face pair.

The Baumgart scheme provides an excellent starting point for representing subdivi-
sions. In order to become fully useful, it must be enhanced in a few directions. It has
difficulty representing subdivisions involving holes. It unnecessarily differentiates
between the primal and dual representations of a subdivision (as defined e.g. by the
Voronoi diagram and Delaunay triangulation). And, it hasn’t defined concise primitives
for moving around a subdivision.
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Face 0 Face 1

Vertex 0

Vertex 1

Edge 0 0

Edge 1 0

Edge 0 1

Edge 1 1

Figure 3: The winged edge data structure

For example, the subdivision shown in Figure 4 (where the dark regions are holes)
is difficult to manipulate using winged edge methods. In particular, it is difficult to trace
the edges adjacent to the vertex in the middle. This is because the holes give no gui-
dance about their boundaries and so we cannot get attachable pieces of the boundary
easily.

Figure 4:Winged edge structure can’t represent this

In practical terms, a data structure’s value is measured as the complexity of imple-
menting a Voronoi diagram algorithm within it. Prior to the work I am about to describe,
applications requiring Voronoi diagrams were typically done using naive techniques
(requiring O(n2 ) algorithms) rather than the O(n log n) algorithms I mention here.



- 8 -

Guibas and Stolfi [GS] provided an elegant extension to the winged edge structure.
They begin with the observation that an edge potentially performs 4 tasks. It acts as a
connector for 2 vertices and as a separator for 2 faces. In performing each of these tasks,
the edge is involved in a ring of edges. These edges might reach to the neighbors of a
vertex or define the boundary of a face. Each of these rings is stored as a doubly linked
list of edges. For each edge, the rings to which it belongs are recorded.

They then define operators to let an edge serve in its 4 roles. Thus, we can walk
around an edge ring finding the next edge in the given orientation around the given ver-
tex or face. It is also possible to move from one edge ring to another. For example, we
can start at the edge ring corresponding to edges adjacent to a given vertex. We can then
move to the edge ring of edges adjacent to the face of which the vertex and current edge
are a part. We will describe this process in further detail below. Their structure is called
the quad-edge and easily stores the Delaunay triangulation and Voronoi diagram
together.

The storage schema for the quad edge structure considers an edge e as joining an
Origin to a Destination and separating Left and Right bounding faces. They define the
primitive operators Org, Dest, Left, and Right to extract these components of the edge.

Edges come in equivalence classes of 4. For the winged edge shown in Figure 3,
we have the four equivalent representatives:

1. The edge from Vertex 0 to Vertex 1
2. The edge from Face 0 to Face 1
3. The edge from Vertex 1 to Vertex 0
4. The edge from Face 1 to Face 0

The first of these is the edge we represented in the original figure. The third is the same
edge pointing in the opposite direction. The second and fourth represent edges which are
dual to these edges. Since all four edges are treated alike, there is no longer a notion of
primal and dual edges. They define primitive operators Rot, Sym, and Flip for moving
among these four components.

These operators combine to provide the facility to navigate easily between a subdi-
vision and its dual. We can also explore the subdivision locally tracing the edges around
a vertex or face. To extend our travel to other vertices or faces we need to go from one
quad edge equivalence class to another.

To do so, we naturally think of oriented edge rings about vertices and faces. For
example, the quad-edge shown in Figure 3 may be a part of 4 edge rings. Traversing
these edge rings can be done in either the positive (ie counterclockwise) or negative (ie
clockwise) direction. For example, the ring of edges about Vertex 1 has Edge 1 0 as it’s
first element in a positive traversal and Edge 1 1 as its first element in a negative traver-
sal.

The primitives ONext(e) and Oprev(e) are defined to give next and previous edges
in the oriented edge ring about the Origin of the edge e. Similarly, we can talk about the
edge ring bounding Face 1. Edge 1 1 and Edge 0 1, the neighboring edges to e in this edge
ring, are computed as RNext(e) and RPrev(e) in similar fashion. Other operators can be
defined to trace Next and Previous neighbors around the Destination vertex and Left face.
These tools for defining quad edges and manipulating edge rings require less than 20
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lines of C code [Dw1] to implement.

From these primitive components, Guibas and Stolfi derive an algebra of relations
among the operators. This algebra allows them to build sophisticated procedures from
repeated applications of their primitive operators. A key procedure implements the
Splice operator allowing us to combine and separate subdivisions. This is their major
construction tool. The operator MakeEdge is a simple memory manager able to create
an isolated new edge that can later be spliced to a subdivision. These two operators can
be implemented in fewer than 50 lines of C code [Dw1].

Finally, there is the problem of using this derivation productively. The previous
paragraphs describe the primitives necessary for manipulating the topology of subdivi-
sions. What about the geometry, as would be required for Voronoi diagrams or Delaunay
triangulations? Guibas and Stolfi provide a single geometric primitive which isolates all
numerical computation involved in computing these structures. This primitive InCircle
determines whether its fourth argument lies within the circle defined by its first 3 argu-
ments. Using InCircle and the above techniques, the Delaunay triangulation can now be
implemented in 50 additional lines of C code.

The elegance of the Guibas Stolfi structure and its ease of implementation have had
significant impact on the application of Delaunay triangulations and Voronoi diagrams.
Students in beginning computational geometry courses are able to implement their algo-
rithm. Previously, this was a research topic. Others have extended the derivations to find
even more efficient algorithms for computing Delaunay triangulation ([Dw2]).

There remains the problem of extending the Guibas Stolfi structure from 2 to higher
dimensions. The basic problem is how to replace the quad edge element. In the plane, it
was sufficient to consider our basic element as an edge and to consider the edge rings to
which that edge belonged. By traversing these edge rings we were able to explore and
build the subdivision. In higher dimensions, we again have a basic element. The new
basic element will again represent an equivalence class and we define primitive operators
to enable us to traverse its elements. The element must also belong to rings of edges and
facets which can be traversed to explore the full subdivision. Finally, we need primitives
which supports procedures for creating basic building blocks and splicing pieces together
to build an entire subdivision. Dobkin and Laszlo [DLa, La] have considered the prob-
lem in 3 dimensions and Brisson and Lienhardt [Br, Li] give general solutions in all
dimensions. We will restrict our attention in what follows to the 3 dimensional case.

In 3 dimensions, our primitive element is the facet-edge pair. This consists of an
edge and one of the facets (ie polygons) to which it is adjacent. Just as an edge in 2D
connected two vertices and separated 2 faces, a facet-edge pair in 3D connects 2 vertices
and separates 2 polyhedral regions. Here we must also represent the facet-edge pair dual
to our primitive element representing the added complex that came from moving a
dimension higher. Another difference is that a ring for a facet-edge pair always involves
2 rings, the ring of facets about its edge and the ring of edges about its facet. Given
orientations in both the facet ring and the edge ring, we are able to define operators
Ppos(fe) and Pneg(fe) as the neighboring polyhedra for a facet-edge fe in a manner
analogous to RNext(e) and LNext(e) for an edge e in the quad-edge scheme.

Beyond these additional complexities, facet-edges work in a fashion similar to
quad-edges. There remains a Splice operator to combine or break pieces. Splice uses the
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quad-edge structure to manipulate the 2 dimensional components of a 3 dimensional
structure. Also, constructing basic elements is more complicated in order to handle the
additional possibilities. However, it is still possible to build all the operators needed to
create, manipulate and traverse 3 dimensional cell complexes in fewer than 1000 lines of
C code.

Implementing Delaunay triangulations and Voronoi diagrams in 3 dimensions is
more complex than the 2 dimensional process. Algorithms in 2 dimensions either rely
upon recursive techniques (i.e. divide and merge as done by [GS]) or iterative techniques
(e.g the sweepline algorithm of Fortune [Fo] discussed below). These algorithms
succeed by building data structures to store information that is essentially 1 dimensional.
For the divide and merge algorithms, this is the monotonic piecewise linear dividing line.
For the sweep algorithms, it is the sweepline itself. Neither paradigm easily extends a
dimension higher. Further, numerical instabilities become more of a problem as we
move to 3 dimensions.

The InCircle primitive we used in 2D gives way to a InSphere primitive in 3D.
Naive implementation of this primitive involves comparing sums of products of quadru-
ples of inputs. Even for double precision computations, this computation can be unstable
in the face of roundoff errors. Recently, Beichl and Sullivan [BS] have produced a code
which solves these problems and gives adequate performance. They build the Delaunay
triangulation in a shelling order using the QR technique of matrix factorization in an
essential manner to handle problems of rounding. As was the case in dimension 2, it is
likely that further research will build upon their work ultimately resulting in simple
implementations.

2.4. Applications of Voronoi Diagrams and Delaunay Triangulations

The Delaunay triangulation and the subdivisions it induces often arise in practical
problems. Typical applications require a subdivision of a portion of space. Vertices of
the subdivision might represent points at which data has been sampled (either physically
or computationally). Facets of the subdivision might represent homogeneous regions of
space with respect to some computation. Theoretical results of computational geometry
are often used to show that the Delaunay is the appropriate triangulation. Algorithmic
developments as described above are then used to create and traverse the Delaunay tri-
angulation. In other situations, properties of the Delaunay triangulation are used to jus-
tify the use of a simple algorithm by verifying that it yields the correct solution. We
describe here a few situations which use these ideas. For further applications and proper-
ties of Voronoi diagrams and Delaunay triangulations, see [Au,PS2].

Almgren[Al] considers the problems of finding the surface of smallest area span-
ning a wire frame or the surface of smallest area which partitions space into regions of
prescribed volumes. This is a classical problem in the area of minimal surface computa-
tion. A discrete approximation to the minimal surface problem involves ‘‘growing’’
such surfaces from a soap bubble cluster type geometry. The goal is to understand the
problem in discrete settings and to use these insights as a tool in understanding the con-
tinuous case. The soap bubble cluster modeling is done thru a Voronoi cell evolver.
This involves a computer program implementing the 3D Voronoi diagram. Combina-
torial geometry is created and evolved by moving control sites of several different colors
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(one color for each desired cell of the desired final soap bubble cluster). This geometry
is used both to compute positions and to create images and videos of this process using
the techniques of computer graphics. Their work has built upon theoeretical develop-
ments relating to the Delaunay triangulation and the data structure of [DLa] is central to
their implementation. This work is central in the field of visualizing mathematical
phenomena. It would not have been possible without the advent of graphics hardware
and computational geometry techniques.

A related application concerns the problem of generating meshes for solving partial
differential equations. Typical of such situations is that described in [Bak1, Bak2] for the
computation of inviscid transonic flows over aerodynamic shapes. The goal is to produce
a triangulation of the space surrounding the aerodynamic shape for which the individual
simplices (in this case tetrahedra) are well behaved. Well behaved tetrahedra allow finite
element methods to produce stable solutions to the relevant equations. In this case, well
behavedness is measured as the worst case ratio between side lengths of a given
tetrahedron and the radius of the sphere inscribed in the tetrahedron. If this ratio grows
as O(1), the triangulation is deemed to be well behaved.

The starting conditions often involve a 2 dimensional triangulation of Delaunay or
similar form. Various techniques have been given to grow this triangulation into a 3D
mesh. The most common combine the advancing front technique which grows off the
initial triangulation in a conformal fashion with Delaunay techniques. These techniques
have proved successful as front ends to solvers considering point sets of size 400,000
from which they generate meshes of 2.4 million points. Reported computed times for the
triangulation are half an hour on a single processor Cray 2.

A second application involving Delaunay triangulation arises in the problem of
volume visualization. Max, Hanrahan and Crawfis [Ma] present a technique for visualiz-
ing a 3D scalar function. In a typical volume visualization task, data is given at a collec-
tion of 3D points and the goal is to provide a useful rendering of the data. The goal is to
generate one or more levels of the image (using transparency) to give a useful view of a
3D function. Solving this problem when data come at vertices of a regular cubic lattice
is a conceptually easy but computationally intensive task.

The more general case is where data values are allowed to occur at arbitrary posi-
tions in space. This is the desired case. In this case, it is necessary to triangulate space
with vertices defined at positions where we have data values. The transparency calcula-
tions now require that we do a process similar to hidden surface removal. A desirable tri-
angulation would be the Delaunay for the reasons described previously. This turns out to
be the correct choice due to the acyclicity condition of Edelsbrunner [Ed2] from the com-
putational geometry literature.

A practical solution to this problem is to find a well-behaved ordering of the tetrahe-
dra. Ideally, such an ordering would have the property that tetrahedron A comes before B
if no part of B is obscured by A with respect to a given view point. Conceptually, this
involves considering a subdivision of a region of space and a fixed direction. We then
ask if there is always a tetrahedron of the subdivision which can be translated to infinity
in the given direction without intersecting any other tetrahedra of the subdivision. We
remove this tetrahedron from the subdivision and repeat the procedure until the subdivi-
sion is empty. It is easy to verify that there are subdivisions for which this is not
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possible. In such cases, it is necessary to introduce new data values and further subdi-
vide, a tedious task. Edelsbrunner [Ed2] shows that this can never be the case if the
Delaunay triangulation is used. Max et al [Ma] are able to build a simpler algorithm
because of this result.

A final application area illustrates the use of properties of the Delaunay triangula-
tion in a seemingly unrelated graphics problem. Painter and Sloan [PS1] consider the
problem of successively refining image generation. The goal is to be able to generate
rapid images using ray tracing techniques and then to refine the images, as time permits,
to higher quality. At the core of their technique is a convolution integral corresponding
to their sampling technique. They must build an image function based upon their sam-
pling to convolve with the filter function from their technique.

Their approach builds upon an interpolation scheme over the image. Their initial
approach was to use linear techniques for this interpolation. When higher quality was
required, they appealed to the properties of Delaunay triangulations to produce a triangle
based interpolation scheme for doing the interpolation. This yields better images because
the locality properties of the Delaunay triangulation lend themselves to interpolation.
They were able to implement their scheme because codes for computing Delaunay tri-
angulations in the plane are readily available.

These examples are meant to show how the Delaunay triangulation is used by
graphics based researchers. Note that the applications are to problems unrelated to com-
putational geometry. Indeed, most computational geometers are unaware of these prob-
lem areas. The techniques of computational geometry were not developed to help these
users but rather were developed in a broader context of basic research. As research in
computational geometry has matured, researchers in other fields have been able to apply
this basic research to their problems. The Delaunay triangulation is a classic example of
this situation. Other example also exist and will continue to grow as the fields of compu-
tational geometry and computer graphics prosper.

Further extensions of the Delaunay and other triangulations are being developed to
help handle situations where the applications often drive the theory. Typical problems
ask for the smallest number of points that can be added to a point set to produce a tri-
angulation having a desired property.

For example, consider the problem of producing a triangulation having no obtuse
angles since these angles can cause problems for interpolation. Bern and Eppstein show
that the addition of a polynomial number of points is always sufficient to generate such a
triangulation [BE]. Another problem is that the Delaunay triangulation of n points in E3

may have size O(n2 ). It is natural to ask whether we can add points to the set to reduce
the size of its Delaunay triangulation. Surprisingly, it is possible to add O(n) points and
achieve a Delaunay triangulation of size O(n) [BEG].

3. Algorithmic paradigms from Computer Graphics



- 13 -

3.1. The Basic Techniques

A central problem in computer graphics is the development of realistic renderings
of complex scenes. In the 1960’s, this quest led to the consideration of algorithms for
accurately rendering 3 dimensional scenes on a graphics display. One requirement is the
elimination of hidden lines or hidden surfaces from a 3 dimensional model. The first suc-
cessful approaches extended existing paradigms to geometric domains. These extensions
initiated important areas of research in computational geometry. The results of this
research have found new applications in computer graphics. We explore two solutions to
the hidden surface problem and show how they were generalized.

In its simplest form, hidden surface removal considers a 3 dimensional scene con-
structed from polygons and asks (for given viewing conditions) which parts of the scene
appear on a flat display. For our purposes, we can assume that all viewing transforma-
tions and projection have been done. All polygons have been triangulated so that our
input is a set of possibly overlapping triangles in the plane from which the visible image
is to be constructed. The triangles contain additional information from which it is possi-
ble to determine which of a pair of triangles is closer to the viewer (and so is visible).
The hidden surface removal problem is then to identify the visible triangles and parts of
triangles.

Two popular early algorithms for this problem were the scan line algorithm of Wat-
kins [Wat] and the space subdivision algorithm of Warnock [War]. These algorithms
extended existing paradigms in algorithm design to the geometric realm. Scanline algo-
rithms are sophisticated extensions of for-loop type constructions available in program-
ming languages. Area subdivision algorithms are applications of simple recursion.

The Watkins scan line algorithm identifies events that will occur during the compu-
tation and orders them. Events are situations where the set of visible triangles changes.
These changes come about from the appearance of new triangles or the intersection of
existing triangles. Ordering is with respect to the y-coordinates at which events occur.
Events are ordered in order of increasing y-coordinate. A data structure is maintained
between events and updated to allow for efficient processing of individual events.

The scanline processing begins with the sorting of y-coordinates of all input trian-
gles. Then there are then 3 types of events. First, a triangle might be inserted or deleted.
Otherwise, a triangle might change it edges of interest. This occurs when the middle (in
terms of y-coordinates) vertex is encountered. Finally, edges of existing triangles might
intersect. Events of the first 2 types can be determined by the initial sort. Events of the
third type must be identified as the algorithm proceeds. It is possible to do so efficiently
because triangle edges can only intersect if they belong to triangles that are adjacent in
our data structure. Hence, by maintaining an ordering of triangles and tracking changes
in the ordering, we can identify events of the third type. The mathematical basis for scan
line algorithms of this type can be traced back at least as far as the work of Hadwiger
[Ha].

Area subdivision algorithms make powerful use of basic ideas. Initially, the plane
is considered as a single rectangle. And, the triangles of this rectangle are considered as
the set of all input triangles. Then, a recursive procedure goes as follows:
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foreach existing rectangle
if the rectangle intersects no triangles

Color the rectangle with the background color and return.
else if the rectangle intersects 1 triangle

Output the triangle clipped to the borders of the rectangle and
return.

if the rectangle is completely covered by some triangle(s)
Remove all triangles which lie behind the frontmost covering tri-
angle.

if this leaves only 1 triangle intersecting the rectangle,
Output that triangle suitably clipped and return.

else if more than 1 triangle remains in the rectangle,
subdivide the rectangle into 4 subrectangles, determine
which triangles intersect each subrectangle and recur.

This recursion terminates when the complete picture (as a set of monochrome triangles)
has been created.

3.2. Further extension of scanline techniques

Scanline techniques of computer graphics were so named because of their connec-
tion to actual graphics hardware. These techniques found application to raster devices
which create their image by refreshing the screen a scanline at a time. When moved
from discrete raster space to continuous Euclidean space, they were renamed as sweep-
line techniques. In part, it was possible to perform this extension with only minimal
modification of the methodology mentioned above. However, as the class of problems
amenable to this technique grew, it was necessary to further extend the technique. To
explore the possibilities, I briefly describe 2 algorithms built upon sweepline algorithms.

First, we consider one of the earliest uses within computational geometry of the
sweepline paradigm. Shamos and Hoey [SH2] considered the problem of determining
whether any 2 of a collection of n line segments have a point in common. To understand
their algorithm, imagine that all n segments were drawn in the plane and that we swept
across them with a vertical line. Imagine that as the vertical line sweeps across the plane,
it keeps track of the order in which the segments intersect it from bottom to top. Note
that not all segments will intersect it in each of its placements. Now, suppose that the
vertical line encounters a pair of intersecting segments. It must be the case that immedi-
ately before their intersection, the two segments were adjacent in the ordering of inter-
sections with the sweep line. Immediately after their intersection, they were also adja-
cent but their order had reversed. From this observation, we conclude that only line seg-
ments that are adjacent in their intersection with the vertical line must ever be tested for
intersection. This would give us the events as discussed for scanline algorithms. Unfor-
tunately, it is inefficient to consider all orders of segments along the vertical line as it
sweeps. There may be O(n2 ) such orderings in the general case and O(n) orderings of
length n even in the case where no pair of segments intersect.
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What remains is the crux of the Shamos-Hoey algorithm, the determination of the
events at which tests must be performed. They begin their algorithm by sorting the 2n
endpoints of the n original line segments based upon their x-coordinates. Having done
so, they observe that the order of segments only changes in a meaningful way when a
new segment begins or an existing segment ends. In the case of an insertion, the execu-
tion of the event is to determine if the new segment intersects either of its neighbors.
And, in the case of a deletion, the execution of the event is to determine if the neighbors
of the existing segment (ie 1 above and 1 below) ever intersect one another. Their algo-
rithm correctly determines if there is an intersection among the line segments. It can do
no more. That is, it cannot guarantee to find the first intersection or determine the correct
number of intersections. By maintaining balanced trees of segments and doing appropri-
ate sorting, their algorithm can be made to run in time O(nlogn). This time is provably
optimal [PS1].

An extension of the sweepline algorithm proposed by Shamos and Hoey was given
by Bentley and Ottman a few years later. They consider the extension to finding all pos-
sible intersections rather than merely determining if an intersection existed. To do so,
they have to modify the sweepline algorithm to enable them to determine events ‘‘on-
the-fly’’. Their algorithm has a running time of O(nlog n + klog n) where k is the
number of intersections reported. Full details are in [BO, PS].

The Bentley Ottman algorithm is not asymptotically optimal. Because it reports
intersections in order based upon their x coordinate, it must sort all intersections and so
cannot finish in the desired optimal time bound O(n log n + k). Achieving this time
bound was an open problem for a decade. In order to reduce the complexity, it was
necessary to produce a sweepline algorithm which modified its sweep direction to
respond to the data it was encountering. Such a technique, called topological sweep was
developed initially for the problem of planar subdivision searching [Ed1]. Chazelle and
Edelsbrunner[CE] were then able to extend it to give an optimal algorithm for the prob-
lem of reporting all intersecting segments. Their algorithm while more complex than
those presented here, represents a significant theoretical breakthrough. They have imple-
mented a version of their algorithm. As topological sweep and its extensions are more
fully understood, we can expect new versions of the sweepline algorithm that find appli-
cation to computer graphics problems of practical importance as well.

There are other extensions to sweepline algorithms which have appeared in the
computational geometry literature. The Voronoi diagram algorithm of Fortune [Fo] is
one that extends the paradigm and yields an immediately practical algorithm. Until his
algorithm appeared, there were known techniques for finding the Voronoi diagram
optimally through the use of recursion but no optimal incremental method was known.
Incremental methods tend to be more robust for computational purposes.

The difficulty with computing a Voronoi diagram via a sweepline method is that
the events begin to occur before they can be predicted. Consider a sweep across the
Voronoi diagram of Figure 2 with a horizontal line. Voronoi regions are encountered
before the site to which they correspond has been encountered. This deterred early
efforts at creating Voronoi diagrams by sweep methods. Fortune circumvents this
difficulty by redefining the distance function. His new distance function has the two
necessary properties. First, a Voronoi region is not encountered by a vertical sweepline
until its site is encountered. Next, the topology of the diagram is the same as that of the



- 16 -

‘‘correct’’ diagram. His modification to the sweepline paradigm can be viewed as a
means of modifying computational techniques so that the paradigm holds for a broader
class of problems.

The examples given here are meant to give a flavor of the impact that the original
technique of Watkins (or previously Hadwiger) has had on computational geometry.
Also, we can see that as the techniques get improved and refined, they will have even
more significant impact on computer graphics. There are numerous other examples
where a sweepline is allowed to having non-trivial shape or where sweeping is done by a
plane or higher dimensional object. Many of these examples aim at efficient solutions to
generalizations of the hidden surface removal problem which originally motivated Wat-
kins. The articles [Ber, Ya] provide pointers into this vast literature.

3.3. Extending the area subdivision paradigm

The area subdivision technique proposed by Warnock built upon pre-existing ideas.
For a survey of the rich history of these idea, see Samet’s excellent books on the subject
[Sa1, Sa2]. Within the computational geometry community, these ideas were developed
as an alternative method to the searching techniques described in the previous section.
As this development proceeded, generalizations were developed which have since found
significant application in the graphics community. We will describe here briefly the
developments which led to the k − d tree, the quadtree, the octree and their application.

The subdivisions above lend themselves to asymptotically efficient searching
schemes. However, the difficulty of searching on existing boundary elements can result
in an overly complicated search scheme. In response to such problems, Bentley [Ben]
developed an algorithm which was asymptotically less efficient but practically more
implementable. He considered the problem of organizing a point set in Ed for various
searches and proposed a method of creating the k − d (i.e. k-dimensional) search tree.

We describe here a 2 − d tree. Imagine that we are given a set of points in the plane
and wish to preprocess them for easy searching. We wish to devise a scheme for generat-
ing easily used search trees. The 2 − d tree in this case consists of internals nodes at
which queries are asked and frontier nodes holding data. The interior nodes are
simplified to only contain queries of the form x i :v which determine whether the ith coor-
dinate of the query point is less than, equal to or greater than the value v. Comparisons
of this type then cause us to take a left, middle or right branch in the search tree. The
queries are organized to alternate the value of i, the coordinate of the query point being
probed. And, the value of v is chosen as the median among all possible values. Using
these ideas, building and searching a k − d tree becomes an easy exercise. An improved
implementation for k − d trees for nearest neighbor searching is given in [Sp].

Schemes for implementing k − d trees for dimensions 2 and 3 have been studied in
numerous contexts. The 2 dimensional versions are a variant of the quadtree search
structure which arose from Warnock’s original algorithm. The 3 dimensional versions of
quadtrees are called octrees. Quadtrees (and octrees) differ slightly from k − d trees. The
former are built by dividing space in half. The latter are built by dividing a point set in
half. Quadtrees tend to perform well in practice since scenes are typically uniformly dis-
tributed. The assumptions underlying k − d trees make it possible to prove that worst case
behavior, which can be significantly worse than optimal, will not occur for such scenes.
The development and application of these simple ideas to a significant number of
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problems in computational geometry and computer graphics has been remarkable.

These structures play a central role in various ray tracing and volume visualization
techniques of computer graphics. For example, a ray tracer will build an octree from the
objects in the scene it is tracing making it possible to test a ray against a small number of
objects (rather than the entire scene) to find its first intersection. Arvo and Kirk [AK]
have extended these ideas even further using the 5 dimensional version of such trees to
further speed ray tracing. In the ray tracing problem, one (or more) rays is traced for
each pixel of an output scene. Arvo and Kirk observe that these rays can be classified by
their origin (a point x,y,z in E3) and direction (represented by the angle pair (θ ,φ)). Once
a ray in a given direction has been traced, the results of this trace can be stored in a
5 − tree that can be searched by future rays in the given direction. These ideas combined
with a clever storage scheme lead to an efficient algorithm.

Others have extended these ideas for the problem of volume visualization. Here the
input is represented as the combination of a subdivision and an array of 3D data samples
called voxels. Octrees have been used productively in this environment as the basis of
many image creation algorithms. The goal is to use the input data in combination with
viewing parameters to generate one or (typically) multiple views of the data. Typical
applications are to computational fluid dynamics and medical imaging. The octree is
built from the data and then probed by the ray tracing algorithm. For examples, see [Ne,
Wi].

Within the computational geometry study of such problems, there have been
numerous range searching extensions of k-d trees. Recent results here apply deep results
from probability theory (dealing with the Vapnik-Chervonenkis dimension) to obtain
theoretical improvements [EW]. Other results give methods of extending range search-
ing techniques to more sophisticated queries [DE].

4. Conclusions and further results

This paper has shown that the fields of computational geometry and computer
graphics have had significant impact on one another. Indeed, a major frustration in writ-
ing this paper is that few of the exciting interactions can be explored. The two problems
we considered -- spatial subdivision creation and exploration and hidden surface removal
-- lie at the core of both computational geometry and computer graphics. Two other
problems must be mentioned to round out the picture. We do so in this section.

4.1. Precise practical computation

Historically, computational geometry papers have assumed that the data they saw
on input was ‘‘well-behaved’’ and that the computations they did were very stable. This
meant, for example, that points in the input set were sufficiently separated, no triple of
input points was on the same line and no triple of input lines contained the same point.
Furthermore, all intermediate computations were done in infinite precision arithmetic so
that roundoff error was never a problem. Geometers justified these assumptions on the
basis that they eliminated unnecessary complications that could easily be fixed. Simi-
larly, graphics programmers would occasionally observe glitches in their pictorial output
which they attributed to problems with floating point computations. Typically, they
would find ad hoc techniques which would enable them to work around these glitches
and produce ideal output.
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As computer speed increases and our appetite for more sophisticated inputs
increases, we can no longer assume that inputs are well behaved or that computations are
done at infinite precision or that ad hoc techniques will always be available to help solve
our problems. This creates the need for a more thorough study of the problem. It is
necessary to isolate the exact parts of the problem where numerical problems occur and
to determine the effect they will have on the ultimate solution.

Three approaches have been followed in exploring this problem. In [EM], a method
is presented to perturb the input to create a new input set which will be well behaved and
yield the same result. This is done by perturbations large enough to avoid degenerate
situations even in the face of finite precision computations but small enough so that the
answer to the problem does not change. Other approaches involve backward error ana-
lyses. Here, we determine the precision at which computations must be done given the
input precision and the nature of the computation [SSG, FM, Bar]. A third approach con-
siders the problem of building a tracker which follows the computation and determines
the precision as the computation proceeds [DS]. The idea is to detect when insufficient
precision remains and backtrack to a point whence the computation can be redone at a
higher precision.

4.2. Decomposition of polygons and polyhedra

A recurrent theme in computer graphics is the modeling and rendering of complex
objects. These problems often depend upon techniques for subdividing individual
objects or the space of entire scenes. In the former problem, the goal is to represent an
object as a formula built in terms of primitive components. In the latter, we might want
to render a scene in a sorted order by appropriate subdivision of space into regions each
involving only a single object. Each of these problems arose in the computer graphics
literature. And, each has motivated research in computational geometry.

Peterson [Pet] proposed the problem of representing a polygon or polytope as a res-
tricted CSG formula. His goal was to have a representation that consisted of intersec-
tions and unions of halfplanes (or halfspaces) of support of the edges (or faces) of the ori-
ginal object. He showed that such a monotone representation of an arbitrary simple
polygon was possible by a formula which used each halfplane exactly once. Others have
extended his work to show that such a formula can be computed in O(nlogn) time. It has
also been shown that no such formula exists for polytopes unless face halfspaces are
repeated. See [DGHS,PY,Dey] for details.

The binary space partition tree was introduced in [Fu] as a scheme for fast rendering
of scenes in computer graphics. This is a scheme for creating a binary tree corresponding
to a scene of polygons. The nodes of the tree are planes of support of individual
polygons. These nodes are meant to subdivide the scene into two nearly equal parts
corresponding to the objects in each half space as defined by the partition plane. This
problem was extended by [PY] to the general problem of finding a collection of arbitrary
planes to subdivide a general scene. They show that a partition of size O(nlogn) for n
edges in the plane. They also show a partition of size O(n2 ) for n planar facets in E3.
Furthermore, they show that this result is the best possible.
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