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Abstract

We show how (now familiar) hierarchical representations of (convex) polyhedra can be
used to answer various separation queries efficiently (in a number of cases, optimally).
Our emphasis is i) the uniform treatment of polyhedra separation problems, ii) the use
of hierarchical representations of primitive objects to provide implicit representations of
composite or transformed objects, and iii) applications to natural problems in graphics and
robotics.

Among the specific results is an O(log |P| - log |@]) algorithm for determining the sepa-
ration of polyhedra P and @ (which have been individually preprocessed in at most linear
time).

1 Introduction and background

Given pairs of geometric objects A and B the problems of testing for non-empty intersection
(AN B # ), together with the construction of AN B (when AN B # () or a description of their
separation (when AN B = @), comprise some of the most fundamental issues in computational
geometry [24,20,14] The intrinsic complexity of these tasks is not yet fully understood even for
the simplest of geometric objects. We continue here our earlier investigations [9,10,11] of these
questions with respect to convex polytopes in two and three dimensions.

One of the essential themes of our earlier work (including also [19]) has been the intro-
duction and exploitation of hierarchical representations of polytopes in this setting. In [9] two
(essentially dual) hierarchical representations for (convex) polygons and polyhedra were intro-
duced and some of their basic properties (such as the efficient response to extremal queries)
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were set out. (See also [20] for a discussion of these same basic ideas). This representation has
been exploited in a series of subsequent papers dealing with separation of polytopes [11], gener-
alized extremal queries and applications [16], intersection of convex and non-convex polyhedra
[21], intersection of convex bodies with curved edges and faces i.e. splinegons and splinehedra
[12,13,25], parallel algorithms for manipulation of polytopes [6,7], applications in computer
graphics [8], on line maintenance of polygons [1] and construction of polyhedral intersections
[3].

Of particular significance in the background of the present paper is the result of Chazelle
and Dobkin [4,5] that (given suitable - and often simple - preprocessing of the objects) in-
tersection testing is less costly than intersection construction for convex objects. That this
is also true of the more general problem of polyhedral separation (in which a closest pair of
points - a witness to the separation - on the given objects is constructed) was subsequently
observed. Schwartz [26] and more recently Edelsbrunner [15] and Chan and Wang [2] studied
the separation problem for (preprocessed) polygons in the plane. The latter two papers present
(optimal) O(log|P| + log|Q|) algorithms for finding the separation of arbitrary polyhedra P
and ). Among the main technical contributions of this paper is another optimal algorithm for
finding the separation of polygons that (unlike earlier algorithms) works even with a somewhat
less explicit representation of polygons. In addition, we present an O(log|P|-log|Q]|) algorithm
for finding the separation of arbitrary polyhedra P and ). This algorithm assumes that the
polyhedra have been individually preprocessed (in at most linear time), and hence provides a
generalization of the linear upper bound for determining the separation of (unpreprocessed)
polyhedra [11].

In addition to these technical contributions we wish to emphasize the following:

(1) our algorithms provide a uniform treatment of polyhedra separation problems; we exploit
the fact that we can reduce both the dimension and the combinatorial complexity of the
objects under consideration within the same representation;

(i1) our hierarchical representations of polyhedra P provide implicit representations of associ-
ated polygons (formed, for example, by projection of P) and of composite objects formed
(for example, by extrusion, intersection or convolution) of polyhedra; and

(iii) many natural problems in graphics and robotics (such as occlusion, collision detection
and path planning) which involve convex objects can be reduced to instances of geometric
intersection/separation queries for implicitly defined polyhedra.

2 Hierarchical representations of polygons and polyhedra

In this section we set out some of our notation and basic definitions concerning polytopes, along
with a review of the definition and fundamental properties of hierarchical representations of
(low dimensional) polytopes. See [14,20,17] for more detailed treatments.

2.1 Basic definitions

A (convez) polyhedron in R* is defined to be the intersection of some finite number of halfspaces
in R%. Bounded polyhedra are called polytopes. (A polytope can be defined equivalently as the



convex hull of a finite point set in ®%). The dimension of a polyhedron P, denoted dim P, is
the dimension of the smallest flat (affine subspace) containing the polyhedron. A polyhedron
(resp. polytope), P is called a d-polyhedron (resp. d-polytope) if dim P = d.

If p and ¢ € R* we denote by L,, the line passing through p and ¢ and R,, the ray from
p passing thru ¢. If @ € R* — {0} and ¢ € R then the set H(a,c) = {z € R¢|(z,a) = c} is
called an oriented hyperplane in ®*. Here, (z,y) represents the inner product of vectors = and
y. A hyperplane H(a,c) defines two closed half spaces HT(a,c) = {z € RY|(z,a) > ¢} and
H=(a,c) = {z € R¥(z,a) < ¢}. We say that a hyperplane H(a,c) supports a polyhedron P if
H(a,c)NP # P and P C H*(a,c). If H(a,c)is any hyperplane supporting P then PN H(a,c)
is said to be a face of P. The faces of dimension (dim P) - 1 are called facets; those of dimension
1 (resp. 0) are called edges (resp. vertices) of P. We denote by V(P) the set of vertices of P.

The I-skeleton (hereafter simply skeleton) of a polytope P is the graph whose vertices (resp.
edges) are the vertices (resp. edges) of P under the obvious incidence relation. Hereafter, we
will often not distinguish between P and its skeleton referring, for example, to the degree of a
vertex v in P (denoted deg(v, P)) rather than in the skeleton of P. We denote by | P| the total
number of faces of P (of all dimensions).

We find it convenient to refer to polytopes with size bounded by some fixed constant as
elementary polytopes. Note that the separation of elementary polytopes can be computed in
constant time.

Two convex objects (be they polytopes or linear subspaces) which intersect do so in a
convex object. If objects do not intersect, we say that they are separated. For convex objects
P and @, we define their separation o(P, @Q)) as the distance between their nearest points (not
necessarily unique). This separation can be characterized in various ways, as we shall see below.
A pair of points (p,q), where p € P and ¢ € @, is said to realize the separation of P and Q if
p— gl = o(P,Q).

2.2 Hierarchical representations

We exploit the same hierarchical representations of polygons and polyhedra introduced in [9]
and subsequently studied in [10,11]. As in our earlier papers we describe such representations
as abstract data types; see [14] for details of an elegant implementation.

Let P be a d-polytope with vertex set V(P). A sequence of polytopes hier(P) = Py,---, Py
is said to be a hierarchical representation of P if

(i) P, = P and Py is a d-simplex;

(i1) Pipq C Py, for 1 < i< k;

(iii) V(Piy1) CV(F;), for 1 <i < k, and

(iv) the vertices of V(F;) — V(P;41) form an independent set in P;, for 1 < ¢ < k.

We refer to k, % |P;| and maz;MaT,ev(p,)-v(Py,)d€g(v, Pi), as the height, size and
degree of hier(P) respectively. A hierarchical representation is said to be compact if it has
height at most clog|P|, size at most ¢|P|, and degree at most ¢, for some fixed constant ¢. We
recall from [11] that



Property 2.1. (a) Given a standard representation of a 2- or 3- polytope P a compact hierar-
chical representation of P can be constructed in time O(|P]).

(b) If Py,---, Py is a hierarchical representation of P and H is any (oriented) hyperplane
such that Piyq C H™T, for some 7, then either i) P; C H™ or ii) there exists a unique vertex
v € V(F;) such that v € H™.

Because of property 2.1 (b) it is natural to (explicitly) endow hierarchical representations
with some additional structure to reflect the (implicit) relationship between successive elements.
Specifically we add the following to the definition of hierarchical representations:

(v) each facet F' of P;4; that is not a facet of P; has associated with it a pointer to the (unique)
vertex of P; that lies in the halfspace opposite to P;11, with respect to the hyperplane
supporting F.

The following is a direct consequence of point iii) of the definition of hierarchical represen-
tations.

Property 2.2. If Py,--- Py is a hierarchical representation of the polytope P and P, = N;ec;H;,
where { H;|j € J} is the set of hyperplanes supporting facets of P;, then P; 1 C Uges(Njes— i H;)-

Remark. Property 2.2 restricts the "growth” of polytopes as we move up the hierarchy. It also
suggests that hierarchical representations have a natural dual formulation. In fact these dual
representations (called inner and outer representations) were presented in parallel in [9].

3 Separation of preprocessed polygons

3.1 Separation of polygons and linear subspaces

The results in [9] for detecting the intersection of polygons and linear subspaces (points or
lines) generalize very naturally to the problem of determining their separation. The basic idea
is to maintain as we step through a compact hierarchical representation of polygon P, the pair
of points (r;,s;) which realizes the separation of P; (the current approximation of P) and the
subspace 5. It suffices to show how this closest pair can be updated in O(1) time per step.
(Note that when r; = s;, that is intersection has been detected, we can continue stepping
through the hierarchical representation of P to actually construct the intersection [9].)
Suppose (7, s;) realizes o(F;, ') and assume that r; # s; (otherwise we are done). Let H), be
the (oriented) line normal to r;s; that supports P; at r;. Then P,_y = (P;_1 ﬂH;)U(Pi_l NH.)
and ‘9
. . U(Pi—l nH )
o(Pi-1,5) = mln{ (s il Hz_vs) }

But o(P;—1 N H;_7S) is realized by the pair (r;,s;) and P;_; N H, is elementary, since the
representation is compact, and hence o(F;—1 N H,5) (and its realization) can be determined
in O(1) time. Thus we have shown the following:

Theorem 3.1. The separation o( P, ) (and its realization) of a polygon P and a linear subspace
S can be determined in O(log|P|) time from a compact hierarchical representation of P.



3.2 Separation of two polygons

Let P and @) be polygons and assume that compact hierarchical representations for both P and
@ are available. Recall that Edelsbrunner [15] has given an O(log|P| + log|@|) algorithm to
determine o( P, Q) and its realization using an array (and hence binary searchable) representa-
tion of both P and @. Our objective in this subsection is to outline another O(log|P|+log|Q|)
algorithm using hierarchical representations of P and (). Our motivation is threefold

(i) Edelsbrunner’s algorithm requires a preprocessing step to check that o(P, Q) # 0. We want
to show that the full problem is just a direct generalization of this subproblem.

(i1) We wish to provide a unified approach to geometric intersection problems; our algorithm
for o( P, Q) follows exactly the same (walking through the hierarchical representations)
approach that we use for both simpler (@ is a linear subspace) and more complex (both
P and @ are polytopes) cases.

(iii) Though Edelsbrunner’s underlying data structure is simpler it is, nevertheless, an explicit
representation of a polygon. Our algorithm applies even in a situation in which the input
polygons are only known implicitly that is, via a sequence of approximations the first
of which may contain no information about the actual edges of the final polygon), see
section 3.3.

As in the case of the previous section we maintain a pair (r;,s;) which realizes the sepa-
ration of approximations P; and @; (of P and @ respectively) and show how this pair can be
updated efficiently as we step through one or the other of the two hierarchies. To update the
pair in O(log|P;| + log|@;|) time (even if we take a step simultaneously in both hierarchies)
is straightforward. We illustrate exactly this approach (which yields an O(log|P| - log|Q])
algorithm for the case where P and () are polytopes, in section 5.3. A more efficient updating
scheme seems to require a somewhat subtler approach - in effect a more powerful invariant.

Suppose that (7, s) realizes the separation of P; and ;. Suppose further that it has been
determined that o(P,Q) = o(P N W,,Q N W), where W, is the concave wedge formed by
the vertices 7, and 7, (separated by at most 8 vertices on F;) and the point r and Wi is
the concave wedge formed by the vertices s, and s, (separated by at most 8 vertices on @);)
and the point s (see Figure 1). Since o(P N (W, — W)),Q N (W, — W.)) > |r — s| it follows
that either o(P,Q) = a(PN W/, QN W) or o(P,Q) = o(PNW,,QnN W), where W/ is the
concave wedge formed by the vertices 7 and r_ (each separated by one vertex on P; from
point r) and the point r and W/ is the concave wedge formed by the vertices s; and s_
(likewise separated by one vertex on ); from point s) and the point s. Furthermore (using
a fairly involved case analysis, the details of which will appear in an expanded version of
this paper), which of these is the case can be determined in O(1) time. Suppose, without
loss of generality, that o(P,Q) = o(P N W/,Q N W,). Since P; N W/ contains at most five
vertices of F; it follows that it contains at most nine vertices of P;_;. Hence we can compute
o(Pi21,Q;) = o( P N W/, Q; N W;) together with a realization (/,s") in O(1) time. Since 7’
is restricted to P,_1 N W/ and s’ is restricted to Q; N W the wedges W/, formed by 74, r_ and
r’, and W, formed by s,, s, and s’ satisfy the invariant.

In this fashion the separation of P; and @; can be updated in O(1) time, and so the sepa-
ration of P and @ can be reduced to a constant number of polygon/linear subspace separation
queries in O(log|P| + log|Q]) time. We summarize this result in the following.



Theorem 3.2. The separation o(P, Q) (and its realization) of polygons P and ¢ can be deter-
mined in O(log|P| + log|Q|) time from their hierarchical representations.

3.3 Separation of implicitly defined polygons

As we mentioned earlier it is of interest to ask the extent to which our algorithm for polygon
separation depends on explicit knowledge of the input polygons. Inspection of the algorithm
reveals that two basic properties of hierarchical representations are used:

i) if a wedge cuts off a segment of the boundary of P; of size s then the same wedge cuts off
g g g
a segment of P;_; of size O(s).

(i1) in the (omitted) case analysis the property that the vertices of P; are vertices of P;_;
is used to restrict the growth of P,_; in terms of P;. Specifically, we use the fact (an
immediate consequence of Property 2.2) that if P; has vertices v; - - -v; and H]‘" denotes
the halfspace through v; and v;4, supporting P, then

Pioi— P CUj(HynH; NHf,)

Properties i) and ii) (or slight variants) would, of course, continue to hold if P; is formed
from P;_; by removing connected clusters of points each of size O(1). In fact appropriate
analogues hold if P; is formed from P;_; by replacing segments of length O(1) by new segments
of length O(1) (so long as P; C P;_1). In the next section we present a new (more general)
definition of hierarchical representation of polytopes motivated by these observations.

4 Implicitly defined polygons and their representation

In this section we show that certain natural operations on polyhedra that give rise to (im-
plicit) polygons are well reflected by our hierarchical representations in the sense that the
representation of the polyhedron embodies an (implicit) representation of the associated poly-
gon. To achieve the greatest generality we relax our definition of hierarchical representations
of polytopes appropriately.

4.1 Hierarchical representations with granularity greater than one

As we have seen, conditions (iii) and (iv) of our definition of hierarchical representations imposes
a locality of change property (essentially Property 2.1(b) and Property 2.2) on successive
elements of such representations. This locality of change is preserved (along with a relaxation
of the corresponding properties) if the definition itself is relaxed by replacing conditions (iii)
and (iv) by the following;:

(iii’) The vertices of V(P;41) — V(P;) induce a subgraph of P;y; each of whose connected
components has size bounded by some constant ¢; and

(iv’) The vertices of V(P;) — V(P;41) induce a subgraph of P; each of whose connected com-
ponents has size bounded by g.

We refer to the bound ¢ as the granularity of the associated representation. Note that our
standard definition describes representations of granularity 1.



4.2 Projections of polyhedra

Given a polyhedron P and plane H and a point p € H, the projection of P onto H through
p, denoted projy(P,p) is the set {¢ € H|R,, N P # 0}. The projection of P is a (possibly
unbounded) polygon whose vertices are projections of vertices of P. It is natural to ask how
faithfully a hierarchical representation of P represents an arbitrary projection of P. More
concretely, can one answer queries about a projection of P using only the representation of
P as efficiently as one could using an explicit representation of the projection? The answer
to this, and similar such questions, is yes; it suffices to ask how the projections of successive
elements in the hierarchical representation of P relate to one another.

Lemma 4.1. If Py, P, --- Py is a hierarchical representation with granularity g of the polyhedron
P, then P/, P;--- P/, where P/ = projy(P;,p),is a hierarchical representation with granularity
g of proju(P,p).

Proof. Tt suffices to observe that each edge €’ of P/ corresponds to an edge e of P;. Edge e
separates two faces fr, and fr of P; and (by Property 2.1(b)) each of these faces has associated
with it (at most) one vertex of P;,_; that lies on the opposite side of the plane supporting
this face, from P;. At most one of these vertices lie on the opposite side of the plane through
p and e, from P; and hence at most one vertex of P;_; projects onto the opposite side of ¢’
from P;. Since the hierarchical representation of P provides access (starting from €’) to each
such vertex in O(1) time, the hierarchical representation of P contains an implicit hierarchical
representation of projy (P, p). O

4.3 Plane intersections of polyhedra

If P is a polyhedron and H is a plane, then the intersection P N H is a (convex) polygon in H.
As before we wish to demonstrate that a hierarchical representation of P serves as an efficient
implicit representation of all polygons formed in this way. Note that the vertices of P N H
can not be put into correspondence with vertices of P (as in the case of projections). Indeed,
vertices of P N H arise from the intersection of edges of P with H, and edges of P N H arise
from the intersection of faces of P with H. However, using our relaxation of the definition of
a hierarchical representation of polygons, we can establish the desired linkage. Specifically,

Lemma 4.2. If Py, - -, Py is ahierarchical representation with bounded degree of the polyhedron
P, then P{,---, P/, where P/ = P;N H, is a hierarchical representation of bounded granularity
of the polygon PN H.

Proof. Suppose the hierarchical representation of P has degree d. By convexity P/ C P/_;.
Hence it suffices to show that, for each 7, every sequence of d vertices on the boundary of P/
contains at least one vertex of P/_,, and every sequence of d vertices on the boundary of P/_,;
contains at least one vertex of P/. But a vertex of P/_; does not appear on P/ if and only if
it corresponds to an edge of P;_; that is removed in constructing P;. Any sequence of such
vertices must correspond to edges of P;_; that are eliminated by the removal of a single vertex.
Hence such sequences are restricted in length by the degree of the removed vertex. Since
vertices of P/ that do not belong to P/_; correspond to edges introduced in the construction



of P; from P;_; and all such edges that share a face in P; arise from the removal of the same
vertex of P;_q, sequences of vertices P/ that do not belong to P/_; are restricted in length by
the degree of the removed vertex. |

In the next section we will see how Lemma 4.2 can be applied to give efficient algorithms
for the separation of polyhedra and polygons and for arbitrary pairs of polyhedra.

4.4 Application: occlusion of polyhedra

A familiar problem in computer graphics is to determine, for a scene consisting of two or more
objects, whether a particular object A when viewed from a point p occludes another object
B. This question is directly reducible to the question does projm(A,p) intersect proju(B,p),
for an arbitrary plane H that does not include p. By Lemma 4.2 we know that hierarchical
representations of convex polyhedra P and ¢ induce (implicit) hierarchical representations of
proju(P,p) and proju(Q,p). By Theorem 3.2 and the remarks of section 3.3 such implicit
representations suffice to test for the intersection of projy (P, p) and proju(Q,p) (in fact, to
determine their separation). Hence we have the following:

), whether P occludes @)
from viewpoint p can be determined in O(log|P| 4 log|@|) time, from compact hierarchical
representations of P and Q).

Theorem 4.1. Given a point p and two disjoint polyhedra P and @

Proof. Choose any plane H with p ¢ H. Polyhedron P occludes polyhedron @) from viewpoint
p if and only if projy(P,p) N proju(Q,p) # 0 and for any point r € proju(P,p) N proju(Q,p)
the line segment P N L,, lies between point p and line segment ) N L, on the line L,,. Since
|proju(P,p)| < |P| and |proju(Q,p)| < |Q] the intersection of projy( P, p) and proju(Q,p) can
be tested (and if non-empty a witness r produced) in O(log|P| + log|Q|) time. By convexity
and disjointness a non-empty intersection implies that either P occludes ¢ or ¢ occludes P.
Since P N Ly, and @ N Ly, can be constructed in O(log|P| + log|Q|) time from hierarchical
representations of P and @ [9], the entire occlusion problem can be solved in this same time.
O

Remark. Consider the cone defined by polyhedron P and point p, cone( P, p) = {q|L,,N P # 0}.
Theorem 4.1 can be interpreted as asserting that detecting the intersection of cone( P, p) with
polyhedron @ can be determined in O(log|P| 4 log|Q|) time. If p is the point at infinity in
direction d, cone(P,p) corresponds to the volume of space swept out as P is translated (in
an unbounded fashion) along direction d. Thus Theorem 4.1 asserts that it is possible to
efficiently detect collision (or more generally to determine the minimum separation realized)
between P and ) as polyhedron P is translated along some (unbounded) vector. Similar
results for collision detection under bounded (and semi-unbounded) translation are discussed

in section 6.

5 Separation of preprocessed polyhedra

5.1 Separation of polyhedra and linear subspaces

We begin by noting that Theorem 3.1, concerning the separation of polygons and linear sub-
spaces, can be directly generalized to apply to hierarchically represented polyhedra. Not only



is the methodology the same, in fact the proof of Theorem 3.1 was presented in such a way
that (reinterpreting P as an arbitrary polyhedron and S as an arbitrary 3-dimensional linear
subspace, i.e. point, line or plane) it proves the following as well:

Theorem 5.1. The separation o(P,S) (and its realization) of a polyhedron P and a linear
subspace S can be determined in O(log|P|) time from a hierarchical representation of P.

Remark. In the event that o(P,5) # 0 and S is a point or a line it is straightforward to
construct PN S within the same time bound (cf. [9]). If S is a plane this is clearly impossible.
However, as we noted in section 4.2, an implicit representation of P N .S (sufficient to answer
other intersection queries) is readily available in this case.

Note that the tools developed in section 4 suggest an alternative approach to the separation
of polytopes and either lines or planes (actually points as well if we permit ourselves to dualize).
For example, the separation of polyhedron P and line L is just the separation of the projections
of P and L onto a plane orthogonal to L, from a point at infinity. Since representations of
these projections are implicit in representations of the 3-dimensional counterparts, a reduction
to the two dimensional separation algorithms of section 3.1 is immediate.

5.2 Separation of polyhedra on a given plane

Suppose we wish to determine the separation of those parts of two polyhedra P and @ that
intersect a common plane H. By the results of section 4.2 this separation o(PNH,Q N H) and
its realization can be determined in O(log|P| + log|Q]) time. (As an immediate corollary we
get the same time bound for determining the separation of a polyhedron P and a polygon @,
in the plane of the polygon.)

5.3 Separation of arbitrary polyhedra

We turn now to the general case where P and () are arbitrary polyhedra and we wish to
determine o(P, Q). Our approach is similar in spirit to the polygon/linear subspace and poly-
gon/polygon separation algorithms of sections 3.1 and 3.2 respectively. It can also be viewed as
a refinement of the (unpreprocessed) polyhedron/polyhedron separation algorithm presented
in [10].

Let Py,---, P, be a hierarchical representation of P and )1 ---@s be a hierarchical rep-
resentation of ), and assume without loss of generality that » < s. Since o(F,,Q,) and its
realization can be determined by a constant number of polyhedron /linear subspace queries (and
hence O(log|Q,|) time in total), it suffices to show how to efficiently update the pair (p;, ¢:),
pi € P; and ¢; € Q;, realizing o(P,Q), as 7 is decremented from r down to 1.

We can assume that p; # ¢; (otherwise, it suffices to set p;—1 = ¢;—1). Let H, and H, be
planes normal to the line L,,,,, such that H, supports P; at p; and H, supports @); at ¢; (see
Figure 2). Then

Py =(PyNHNHU(PiNH,)

Qi-1=(Qici NHNHU(QiinH,)

<



and
O'(Pi_l N H;—,Qi_l N H;—)
o(Pi—1,Qi—1) = min o(Pi_1 N Hp_an’—l)
U(Pi—vai—l qu_)

But since o(P;_1 ﬂH;’, Qi1 ﬂH;’) is realized by the pair (p;, ¢;), and P,y NH, and Q;_1NH -

are both elementary, it follows that o(P;_1,Q;—1) can be constructed using O(1) polyhe-
dron/linear subspace separation queries, using a total of O(log | P;_1|+log |Q;-1]) = O(log(max{|P|,|Q|}))
time. Since the entire process completed in » = O(log(min{|P|, |@|})) reduction steps, we have

the following;:

Theorem 5.2. The separation o(P, Q) (and its realization) of polyhedra P and @ can be
determined in O(log|P| -log|@]) time from their hierarchical representations.

Remark. The complexity bound in Theorem 4.2 is comparable to that achieved for detecting
polyhedron/polyhedron intersections in [10]. However, the earlier algorithms used a rather
cumbersome representation of polyhedra that requires O(|P|?) space (and preprocessing time).
It is, however, interesting to note that the general approach for detecting polyhedral inter-
sections used in this earlier algorithm, namely testing in a binary searching fashion - for the
intersection of a succession of polyhedral cross sections, can be emulated in a straightforward
way using (slightly augmented) hierarchical representations. Specifically, if we record, as part
of our representation of a polyhedron P, the sequence of vertices of P sorted along an arbitrary
axis, then we have available, in an implicit form, all cross sections of P normal to this axis.
Using these we can perform a sweep or binary search along this axis, which lends itself to the
implementation of another class of algorithms.

6 Separation of implicitly defined polytopes

In this section we outline some of the evidence for our claim that our hierarchical representations
lend themselves not only to the representation of geometric primitives but also to composite
or transformed objects formed (in natural ways) from those primitives. Since many natural
operations on polyhedra preserve convexity, it is natural to ask if the hierarchical representation
of the operands somehow embody an (implicit) hierarchical representation of the result. This
turns out to be the case for the operations of extrusion, intersection, and convolution.

6.1 Extrusions of polygons and polyhedra

If P is a polytope and v is a vector then extr(P,v) is the polytope formed by translating
(extruding) P along the vector v. This is a special case of convolution (which we discuss in
section 6.3) but is interesting and instructive to study in its own right. It is clear that eztr(P, v)
is a polytope. In fact we claim the following;:

Lemma 6.1. If Py, Py, - - -, Py is a hierarchical representation of the polyhedron P, then P, Py, --, P},
where P! = extr(P;,v), is a relaxed hierarchical representation of extr(P,v).
As a corollary of lemma 6.1 (and the results of sections 3 and 5) we have the following:



Corollary 6.2. Given polygons (respectively polyhedra) P and @) and a vector v, the separation
o(extr(P,v),Q) between the extrusion of P and () can be determined in O(log|P| + log|Q])
(respectively O(log|P|-log|Q])) time, from hierarchical representations of P and Q.

6.2 Common intersections and convolutions of polyhedra

The intersection P N @ of two polyhedra P and @ is a polyhedron. It is natural to ask the
extent to which hierarchical representations of P and () embody a representation of P N Q.
Chazelle [3] has recently shown that an explicit description of P N @ can be constructed from
hierarchical representations of P and @) in O(|P| + |@Q|) time. It turns out (as we claim below)
that sufficient information concerning P N @) is implicit in the representations of P and @), that
with no additional preprocessing many queries concerning P N () can be answered as efficiently
as they can with an explicit representation of P N Q.

The convolution P * () of polyhedra P and () is defined by
PxQ={p+qlpe PkqgeQ}

(where points are added like their associated vectors). (See [18] for a careful treatment of con-
volutions in the context of geometric intersection problems.) Note that P*@Q = Uyeqextr(P,q),
provided the origin belongs to ).

Though the convolution P * @) of polygons P and @) can be constructed simply from (and
is linear in the size of) P and @, this is not the case for polyhedra. It is well known that the
convolution of two polyhedra of size n can have size @(n?). As a consequence there is even
more motivation in this case to avoid explicit construction of P * () when information implicit
in the representations of P and @) suffice. Our results concerning common intersections and
convolutions of polyhedra can be (weakly) summarized as follows:

Theorem 6.3. Given compact hierarchical representations of P, @ and R, both (P N Q,R)

<

and o(P * @, R) can be determined in time polylogarithmic in n = maz(|P|, |Q|, | R|).

6.3 Applications

We have already observed that our results have application to certain basic questions in com-
puter graphics. We close this section with some remarks concerning additional applications of
our results on determining the separation of implicitly defined polyhedra. We will state the
applications in terms of polygons; similar results hold for polyhedra.

1. If we have two polygons positioned in the plane and one is translated in a specified
direction a specified distance it may or may not collide with the other polygon. The
techniques of this paper suffice to give logarithmic time answers to all of the following
questions:

(1) Do the polygons collide?

(ii) if so, at what distance (in the translation) do they collide and what are the points
of contact?

(iii) if not, at what point in the translation do they come closest to one another and
what are the points that realize this closest distance?



2. If we have three polygons P, () and R positioned in the plane it may or may not be
possible by a sequence of translations to move polygon R between polygons P and Q).
It is well known that this is reducible to a question about convolutions, specifically the
translation is possible if and only if (P * R) N (Q * R) = (. Thus we are able to provide

polylogarithmic time solutions to the following queries:

(i) Is the translation possible?;
(i1) if so, what is a description of the translation path that maximizes the clearance?;

(iii) if not, what are the points of contact when R becomes "stuck”?
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